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Across the world, the assessment of environmental impacts attributable to infrastructure and development projects
often require a comparison between observed post-impact outcomes with what “would have happened” in the ab-
sence of the impact (i.e., the counterfactual). Environmental impact assessment (EIA) methods traditionally deter-
mine the counterfactual based on strong assumptions of stationarity (e.g., using before and after comparisons) and
can be particularly challenging to use in the context of substantial data gaps, a vexing problem when combining sev-
eral time-series data from different sources. Here we propose and test a widely applicable statistical approach for
quantifying environmental impacts that avoids the stationarity assumption and circumvents issues associated
with data gaps. Specifically, we used a Gaussian Copula (GC) model to assess the hydrological impacts of the Tucurui
dam on the Tocantins River in the Brazilian Amazon.
Using multi-source water level and climate data, GC predictions of pre-dam hydrology for the validation period were
excellent (Nash-Sutcliffe coefficients of 0.83 to 0.98 and 93-96% of observations within the 95% predictive intervals).
In the post-dam period, the river had higher dry-season water levels both upstream and downstream relative to the
predicted counterfactual, and the timing and duration of wet-season drawdown was delayed and extended, sub-
stantially altering the flood pulse. These impacts were evident as far as 176 km away from the dam, highlighting
widespread hydrological impacts. The GC model outperformed standard multiple regression models in representing
predictive uncertainty while also avoiding the stationarity assumption and circumventing the issue of sparse and in-
complete data. We thus believe the GC approach has wide utility for integrating disparate time-series data to quan-
tify the impacts of dams and other anthropogenic phenomena on riverine hydrology globally.
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1. Introduction

Environmental impact assessments typically require a comparison
between observed post-impact outcomes with what “would have hap-
pened” in the absence of the impact (i.e., the counterfactual). Acommon
approach for determining the counterfactual is to compare variables of
interest before and after impact, implicitly assuming that the counter-
factual would be similar to what was observed before the impact
(i.e., the stationarity assumption). Multiple studies have used this ap-
proach to examine the impact of dams on hydrology (e.g., Forsberg
etal., 2017; Sabo et al., 2017; Timpe and Kaplan, 2017). Although the as-
sumption of stationarity is central to hydrologic indicator methods
(e.g., Richter et al., 1996), it may be invalid when other factors
(e.g., climate, land use, and management regimes) have also changed
over time, which is often the case when quantifying long-term hydro-
logical impacts (Milly et al., 2007).

A commonly-adopted approach to circumvent the stationarity as-
sumption is the Before-After Control-Impact (BACI) design. With a
BACI design, comparable control and treatment sites are identified and
monitored before the onset of an impact, after which it is assumed
that changes not attributable to the impact influence all sites in a similar
fashion. In hydrological studies, BACI designs like the paired watershed
approach have greatly advanced our understanding of watershed hy-
drology (e.g., Clausen and Spooner, 1993; Poff et al., 2007). However,
identifying appropriate control sites for BACI designs can be challenging
given that they must be close enough to share the effect of concurrent
changes while at the same time being distant enough to not be affected
by the impact of interest. Furthermore, the assumption that any concur-
rent change unrelated to the impact will have a similar effect on both
control and impact sites may not always hold, particularly over large
spatial and temporal scales.

A more recent approach to determining the counterfactual consists of
using “synthetic controls”. Following the concepts put forth by Abadie
et al. (2010), the basic idea consists of creating model-based predictions
of the counterfactual based on data from one or more control sites, as
well as other potentially important drivers of the phenomenon being
studied. As a result, this statistical approach accounts for post-impact
changes in important driving variables. However, a critical challenge
when applying the synthetic control approach to quantify changes in riv-
erine hydrology is the presence of data gaps in response variables
(e.g., discharge or water level time series) as well as their potential drivers
(e.g., rainfall, temperature, and evapotranspiration). This “data-gap chal-
lenge” is particularly vexing in the developing world (Getirana et al.,
2009). Gap-filling algorithms have been proposed and successfully ap-
plied in multiple fields, including medicine, hydrology, meteorology, re-
mote sensing, and ecosystem carbon exchange (Andersson et al., 2012;
Hui et al., 2004; Ruelland et al., 2008; Schneider, 2001; van Buuren
et al,, 1999; Weiss et al,, 2014). However, none of these methods have fo-
cused on predicting the counterfactual, despite the fact that this predic-
tion task can be re-interpreted as a missing data problem (Rubin, 1976).

Given these challenges, we propose to use a Gaussian Copula (GC)
model to predict the counterfactual in the presence of substantial data
gaps while simultaneously avoiding the stationarity assumption through
the integration of data from multiple sources. Copula models have been
widely applied in hydrology to quantify the association between multiple
hydrological variables, such as drought duration, affected area, and sever-
ity (Xu et al., 2015), annual maxima of streamflows or rainfalls (Renard
and Lang, 2007), and to predict associations among climate, flows, and
flood risk (Favre et al., 2004; Liu et al., 2018; Yin et al., 2018). Despite
the widespread use of copula models in hydrology (Hao and Singh,
2016), they have yet to be applied in the context of hydrological impact
assessments and in the presence of substantial missing data. Here, we

implement the GC approach within a Bayesian framework to fully account
for sampling and parameter uncertainty, enabling a statistically rigorous
evaluation of how divergent the post-impact hydrologic data are relative
to those expected under the modeled counterfactual. We applied the GC
model to assess the impact of the Tucurui dam on the hydrology of the To-
cantins River in the Brazilian Amazon. Tucurui was the first large-scale hy-
droelectricity project implemented in the Brazilian Amazon, producing
8370 MW of energy and having an inundated reservoir area of
2875 km? (Tundisi et al., 2005), and it is emblematic of many of the
existing and planned hydroelectric dams in the region (Anderson et al.,
2018; Moran et al., 2018).

2. Materials and methods
2.1. Study site and data

The Tocantins River drains 750,000 km? of rainforest and savanna
(cerrado) in the southeastern Amazon (Fig. 1) and is among the most al-
tered river basins in the Amazon River basin. The first dam on the To-
cantins (Tucurui) came online in 1984 and the second (Serra da Mesa)
started to operate in 1998. Today, there are 56 hydroelectric dams in
the Tocantins-Araguaia watershed (Castello and Macedo, 2016), with
seven large dams on the Tocantins River having an overall published
electricity generating capacity of approximately 13,000 MW
(i.e., production capacities range from 241 to 8370 Megawatts and res-
ervoir areas range from 104 to 3014 km?). Two new large dams are
planned for the Tocantins and five more are planned or in construction
on the Araguaia River (the Tocantins' main tributary) or its tributaries,
despite expectations that they will exacerbate harm to regional biodi-
versity, fisheries, tourism, and indigenous peoples (International
Rivers, 2016). Fisheries have been particularly degraded by the cascade
of dams on the Tocantins (Cetra and Petrere Jr, 2001; de Mérona et al.,
2001; Ribeiro et al., 1995; Tundisi, 2008), promoting new interest in im-
proving our understanding of natural and altered hydrologic regimes in
this highly impacted ecosystem.

Water level and precipitation data originally collected by the
Brazilian National Water Agency (Agencia Nacional de Aguas; ANA)
have been organized and made freely available by Tucker Lima et al.
(2016). Other meteorological data (relative humidity, evaporation, min-
imum, maximum, and mean temperatures) were collected by the
Brazilian National Institute of Meteorology (Instituto Nacional de
Meteorologia; INMET; freely available at http://www.inmet.gov.br/
portal/). These variables were chosen because they are known to
strongly influence watershed hydrology (Beighley et al., 2009; Costa
and Foley, 1999) and because relatively long time series were available.
We only used climate data spanning at least 20 years and water level
data spanning (at minimum) the time period between 1975 (the year
that construction of Tucurui began) and 1994 (10 years after Tucurui
began to operate). Given these criteria, our analysis relied primarily on
the following 29 variables:

a. Daily water level (cm) from 9 gauges in the Tocantins River and its
tributaries;

b. Monthly precipitation (mm) from 10 ground-based stations; and

c. Daily relative humidity (%), daily temperature (minimum, maxi-
mum, and mean; °C), and monthly evaporation (mm) from two
long-term weather stations (Tucurui and Maraba)

Daily data were aggregated to monthly averages (sums for precipita-
tion), covering the period from July 1969 to May 2015 (Figs. 2 and 3);
these figures illustrate the substantial number of gaps in both water
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Fig. 1. Location of the Tucurui dam on Tocantins River in the southeastern Amazon, illustrating the spatial distribution of water level, weather, and precipitation stations used in this study.
The identifier for each weather station (orange circle), precipitation station (blue circle), and water level gauge (green circle) are provided in the corresponding color. The Serra da Mesa
dam (the second dam to start operating in the Tocantins river) is located approximately 1500 km upstream of Tucurui and is not shown. Inset displays the extent of the Amazon (green)
and Cerrado (orange) biomes, together with the Tocantins and Araguaia watershed boundaries (thick black line) and state limits (grey lines). (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

level response variables and climate drivers. On average, these time-
series had 19% of data missing, though five time-series had >25% miss-
ing data.

2.2. Counterfactual period

To create counterfactual predictions, we fit models only to data from
sites that have likely not been impacted by any dams. Examination of
Fig. 1 suggests that gauges 2970, 2975, and 2920 (and potentially
gauges 2905 and 2910) are likely to have been impacted by the Tucurui
dam, an assertion supported by Timpe and Kaplan (2017) in their re-
view of the hydrologic impacts of Amazon dams. Therefore, we ex-
cluded data from these gauges from 1984 (the year Tucurui dam
started to operate) onwards (red polygons in Fig. 3). Gauges 2885,
2370, 2371, and 2360, on the other hand, are unlikely to have been im-
pacted by Tucurui dam given their distance from this dam and their rel-
atively low hydrologic alteration level (Timpe and Kaplan, 2017).
Nevertheless, because gauges 2370, 2371, and 2360 might have been
impacted from 1998 onwards by the operation of the Serra da Mesa
dam and other upstream dams, we excluded their data from 1998 on-
wards (black polygons in Fig. 3).

We also set the observations from gauges 2975, 2970, 2920, 2905,
and 2910 for the pre-impact period between 1979 and 1984 to missing
(orange polygons in Fig. 3), allowing us to use this period for model val-
idation. More specifically, we expect that there will be little difference
between the predicted and observed water-levels given that no dam

had started to operate in the region during this time period. Therefore,
we use these data to evaluate the out-of-sample predictive skill of the
different models described below (i.e., model validation).

2.3. Multivariate normal distributions

To explain why GC models are useful for impact assessment with
sparse data, it is first instructive to review two important properties of
the multivariate normal distribution. First, when using multivariate nor-
mal distributions, any variable can be predicted with a linear regression
model using the other variables as covariates/predictors. For example,
assume we have the following model:

Z1
22
23

where zy, 25, z3 are distinct variables (e.g., water level in gauge 1, water
level in gauge 2, and rainfall) and the multivariate normal distribution

~ N(”Sx] ’ 2‘I3><3)

H
has mean vector and covariance matrix given by g5, ; = [ Uy | and 33,3

_[ “3

o T Q
Qo o

c
d |, respectively. For this model, standard multivariate
f
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Fig. 2. Time series of climate variables used in this study. Climate variables include rainfall from ten stations (left panels) and evaporation, relative humidity, and temperature (minimum,
mean, and maximum) from two weather stations (T and M stand for Tucurui and Maraba, respectively) (right panels). Numbers and names in the top left of each panel refer to station

identifiers (see Fig. 1).
normal theory states that:

P(z1122,23) = N(Bo + Baz2 + B3z3,0%)
Bo =My — gisgﬂz— 2;:32'#3752 = Z:jf,ﬁa = g}?:Z‘zijz =a—
(bf —dc)b+(ce—bd)c

of —d*
multivariate normal distribution enables prediction of water level in
gauge 1 (z;) based on data from water level gauge 2 (z,) and rainfall
(z3) using linear regression.

The second property of multivariate normal distributions that make
them useful for our application is that any subset of variables will also
have a joint multivariate normal distribution, with the corresponding
covariance matrix parameters. Using the example above, if rainfall
data (z3) is missing, the joint distribution for water level in gauges 1
and 2 (z; and z,, respectively) is given by:

2l UN( B |a b
V) Hy |b e
Importantly, water level in gauge 1 (z;) can be predicted based on

water level in gauge 2 (z;) alone (i.e., ignoring the missing rainfall var-
iable [z3]) using the following expression:

where

. This expression illustrates how the assumption of a

p(z1122) = N(Bj + B3z, 0%)

. 2 . .
where Bj = 1t; —2p1,, 8; = & and 0% = a— . This expression demon-
strates that, even if data from one or more on predictor variables are
missing (e.g., z3), the multivariate normal distribution assumption

enables the prediction of z; based on the subset of variables that are
not missing (e.g., z>). Importantly, the regression coefficient for z,
need not be the same when z3 is observed versus when zs is missing
(i.e., Bo, 32 might be different from 3g, 32). This feature of the multivar-
iate normal distribution allows for straight-forward predictions based
on “gappy data” without the need to first eliminate observations with
missing data or develop gap-filled datasets.

2.4. Gaussian Copula (GC) models

The Gaussian Copula is a joint model for all observed variables
(e.g., water level at different gauges and rainfall and other climate vari-
ables in different weather stations). Let the observed variable i at time t
be denoted by y!*. Following Genest et al. (1995), we ensure that all the
variables have a normal marginal distribution by using the following
semiparametric transformation on the original variable y{®:

where d(x) is the standard normal cumulative distribution function
(CDF) and F;(q) is the empirical CDF, given by:

. 1
Fi(q) = Pt ?':11(}’5[><Q)
1

where n; is the number of observations for variable i. We further assume
a multivariate normal distribution for the vector of transformed
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Fig. 3. Time series of water level measured at nine gauges on the Tocantins River and its tributaries. Numbers in the top left of each panel refer to river gauge identifiers (see Fig. 1). Colored
boxes depict periods when data were excluded for model fitting. Orange boxes represent the model validation period (1979-1984) for sites likely impacted by the Tucurui Dam. Red boxes
represent the counterfactual period (1984-2015) for sites likely impacted by Tucurui. Black boxes represent data that were potentially influenced by the Serra da Mesa dam and other
newer dams upstream from Tucurui. All data outside of these boxes were used for model calibration. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

variables at time t z$;:
t)
zéxl ~ N(upxlﬂszl’>

where p is a vector with the mean of each variable, 3, is the covariance
matrix, and p is the overall number of variables. To capture potential de-
layed effects of climate variables and water level in control gauges

(Villar et al., 2009), we used all of these variables with and without a
one-month time lag (Costa et al.,, 2003). As a result, the overall number
of variables was equal to p = 53. Finally, we adopted the following
priors:

Mpx1 ~ N(0p1,Ipxp)



604 D. Valle, D. Kaplan / Science of the Total Environment 677 (2019) 599-611

3 ~ Wishart(vo, Mp.p)

where vy was set to the total number of variables plus two (i.e, vo = p
+ 2) and M was set to the identity matrix. The Wishart distribution is
a commonly used prior for the precision matrix 3! because of its
conjugacy with the multivariate normal distribution and these choices
for the prior parameters vy and M correspond to a relatively uninforma-
tive prior for 3 (Hoff, 2009).

To fit the model, we created a customized Gibbs sampler in R (R Core
Team, 2013). A total of 10,000 iterations were run and the first half was
discarded as burn-in. Convergence was visually assessed through trace
plots of the log-likelihood and individual elements in p..;. We make
our code publicly available as Supporting Information, together with a
short-tutorial on how to use it.

2.5. Benchmark models

We compared the performance of the GC model to that of two
benchmark methods. The first benchmark model (hereafter referred
to as the “monthly average” model) used the monthly average of the ob-
served water level prior to dam construction to predict the counterfac-
tual (Hui et al,, 2004). For the second benchmark model, we relied on a
multiple linear regression approach. Because this model requires com-
plete observations, only water-level at control gauges and regional pre-
cipitation data were used as predictor variables. We created the regional
precipitation predictor by averaging precipitation data across all 10 sta-
tions for each month and year combination, ignoring missing observa-
tions. We did not include other climate variables (i.e., temperature,
humidity, and evaporation) due to the amount of missing data in
these observations (i.e., these variables had >13% of missing data even
after combining data from both long-term weather stations to create re-
gional level variables). This benchmark model is hereafter referred to as
complete data multiple regression model (CDMR).

2.6. Performance metrics for model comparison

For all models, we summarized the out-of-sample predictive perfor-
mance for the validation period using the empirical coverage of the 95%
predictive interval and the Nash-Sutcliffe (NS) coefficient. The empirical
coverage quantifies the proportion of times that the 95% predictive in-
terval encompassed observed water levels. A model that adequately
represents predictive uncertainty should have an empirical coverage
that roughly matches the nominal coverage of 95%. The Nash-Sutcliffe
S0y’
Loy
where y¢ and yf are the observed and predicted water-levels at time t,

model efficiency coefficient is calculated as NSE =1—

respectively, and y° = % is the mean observed water-level. The
NSE coefficient is a commonly used metric to assess predictive skill of
hydrologic models, with a result of 1 corresponding to a perfect match
between modeled and observed river water level.

3. Results
3.1. Model validation

The Nash-Sutcliffe coefficients for the GC model in the validation pe-
riod were substantially higher those for the monthly average bench-
mark model, indicating that the GC model predicted more than just
the highly seasonal pattern of water level variation (Table 1). The GC
model had a similar predictive performance when compared to the
CDMR model, except for gauge 2910, for which it had substantially im-
proved performance than both the CDMR and monthly average bench-
mark models. In addition to improved performance for gauge 2910, the
GC model was also able to make predictions for all 59 months of the

Table 1

The GC model had substantially higher out-of-sample predictive skill for gauge 2910 and
consistently outperformed the complete data multiple regression (CDMR) model in
representing predictive uncertainty, based on the pre-dam validation data. Model perfor-
mance metrics are shown for the Gaussian Copula (GC), complete data multiple regression
(CDMR), and monthly average models. The best model for each gauge and criterion is
highlighted in bold. Higher values for the Nash-Sutcliffe coefficients indicate greater pre-
dictive skill while empirical coverage values closer to 0.95 indicate better uncertainty
characterization. Data during the validation period that were outside the range of the data
used to calibrate the models were excluded when computing these performance metrics.

Gauge  Nash-Sutcliffe coefficient Empirical coverage
GC CDMR  Monthly average  GC CDMR  Monthly average
2905 098 099 0.83 095 0.88 -
2910 083 0.60 0.68 093 092 -
2920 098 097 0.84 095 1.00 -
2970 098 098 0.80 096 083 -
2975 097 098 0.84 096 0.85 -

validation period whereas the CDMR model, despite relying on a
much smaller subset of predictors, was only able to make predictions
for 49 months (83%) due to missing data on one or more predictor var-
iables. Importantly, the GC model also more faithfully represented pre-
dictive uncertainty, with empirical coverage very close to the nominal
coverage of 95% (Table 1) during the validation period. This is a critical
model performance metric if the identification of impacts is predicated
on the detection of statistically significant departures from the counter-
factual. On the other hand, the CDMR approach yielded 95% predictive
intervals that were too narrow (i.e., empirical coverage much lower
than the nominal value of 95%) or too wide (i.e., empirical coverage
equal to 100%). This reduced ability to adequately represent uncertainty
is likely due to the lower number of complete data observations avail-
able to calibrate the CDMR model (38 observations for gauge 2910
and 50 for the remaining gauges). The GC model, on the other hand,
yielded much better uncertainty characterization because it estimated
its covariance matrix using (a) climate data from all 551 months
(i.e., data depicted in Fig. 2), (b) pre-dam water-level data from im-
pacted gauges, and (c) water-level data from control gauges for the en-
tire period (i.e., the water-level data outside the boxes in Fig. 3).

We determined the relative importance of each group of predictor
variables (e.g., water-level from control gauges, rainfall from multiple
stations, humidity from both weather stations, etc.) for the GC model
by making predictions based solely on each group of variables and cal-
culating the corresponding NS coefficient for the validation period.
Models with only water-level data from control gauges yielded the
highest NS coefficients for the validation period while models with
only humidity covariates had the worst performance (Fig. 4). On the
other hand, models with only temperature (including minimum, aver-
age, and maximum temperatures), rainfall, or evaporation variables
generally resulted in similar NS coefficients. Interestingly, except for
gauge 2910, there was almost no performance difference between
models with only water-level data from control gauges and models con-
taining both water-level and climate variables. While this might be
interpreted as suggesting that climate variables have little predictive
skill once data from control gauges are taken into account, these climate
variables were actually critical for improving model performance when
only data from gauge 2885 were available (results not shown). This sit-
uation corresponds to the time period after the upstream Serra da Mesa
dam started to operate and water-level data from gauges 2360, 2370,
and 2371 could no longer be used for prediction of the counterfactual
(black rectangles in Fig. 3). These results highlight the ability and flexi-
bility of the GC model in predicting water-level at impacted gauges by
augmenting limited data from control gauges with climate data.

3.2. Dam operation period

After the pre-dam validation period and the initiation of operations
at Tucurui (i.e., from 1984 onwards), there were substantial
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discrepancies between GC model predictions and observations, which
can be attributed to the impact of dam operation on the hydrologic re-
gime (Fig. 5). Specifically, results for the most downstream gauge
(gauge 2975; Fig. 5a) revealed that water levels were significantly
lower than predicted in the dry season immediately after the Tucurui
dam started to operate. In contrast, the primary impact of the dam in
all subsequent years has been higher-than-expected water levels during
the entire dry season, with only sporadic observations outside of the
95% credible interval during other periods. A very similar pattern can
also be observed for the other downstream gauge located closest to
Tucurui (gauge 2970; Fig. 5b).

Dam impacts for the closest upstream gauge (gauge 2920; Fig. 5¢)
were of a somewhat different nature. After the first year of dam opera-
tion, dry-season water levels remained extremely high relative to the
pre-dam expectation, with a particularly strong effect in the initial
years of dam operation. This is likely a consequence of the proximity
of this gauge to the dam reservoir, which precluded dry-season draw-
down once the reservoir was full. We also found a subtler effect on
the timing of water level decrease after wet season peaks. In general,
water level declines were delayed and took longer than would be ex-
pected under the pre-dam condition. This phenomenon was consistent
across multiple years, as indicated by the red dots on the falling limb of
the hydrograph in most years (Fig. 5¢). These higher-than-expected
water levels during the low-water season and changes in the seasonal-
ity of drawdown were also evident in gauge 2905 (Fig. 5d), despite
being >176 km away from the Tucurui dam. Finally, there were also sub-
stantial discrepancies between observed and predicted water levels for
gauge 2910 (Fig. 5e), located at an upstream tributary (Fig. 1). While
these results should be viewed with caution given the lower predictive

ability of the model for this gauge (NS = 0.83; Table 1) and relative
sparseness of post-dam data, they mirror the response of all other up-
stream stations and are concordant with changes induced by backwater
effects from increased water levels at the tributary's confluence with the
Tocantins River.

While the significant deviations between observed and predicted
river water level (red circles in Fig. 5) might be attributed to declining
model performance as predictions are made further into the future
(e.g., due to changes in other factors not included in our model), this
is unlikely for two reasons. First, when we re-ran our algorithm with
predictions starting in 1984 (instead of 1979), discrepancies were still
evident immediately after 1984 and their temporal pattern at each
site did not change substantially (data not shown). Second, if predictive
model performance were declining with time one would expect the
number of significant departures to increase over time. However, signif-
icant differences arise immediately after Tucurui started to operate and
the detected patterns do not vary substantially from year to year for im-
pacted gauges throughout the first decade of dam operation.

Fig. 6 illustrates the magnitude of hydrological alteration attribut-
able to Tucurui for two specific metrics: dry season water level and
timing of drawdown. Specifically, the left panels in Fig. 6 illustrate that
observed dry-season water-levels in the post-dam period were 86 cm
to 203 cm higher than those predicted by the GC model, while this dif-
ference ranged from —1 to 32 cm prior to dam operation. The right
panels in Fig. 6 show that, after the dam started to operate, observed
water-levels generally declined to pre-dam annual mean levels one
month later than predicted for all gauges except for 2970 and 2920;
for the gauge immediately downstream of Tucurui (2970) there was lit-
tle difference in the timing of water-level decline, but for the gauge
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immediately upstream of Tucurui (2920), water-level declines were
typically delayed by three months.

4. Discussion

In this paper, we present a Gaussian Copula (GC) approach to deter-
mine the impacts of dams on riverine hydrology. This approach avoids
the stationarity assumption inherent to before and after comparisons
and circumvents issues associated with incomplete and sparse time-
series data, a ubiquitous challenge when integrating multiple time-
series datasets, particularly in developing countries. While numerous
physical and statistical methods are available for hydrological predic-
tion, the GC method is a relatively straight-forward and flexible ap-
proach that captures uncertainty associated with data gaps and
predictions within a single modeling step, which is critical for identify-
ing impacts based on statistically significant differences between obser-
vations and predictions. In this work, we demonstrate how GC models
can be used to yield insights into the impacts of dams on riverine hy-
drology and propose that the method is particularly valuable for loca-
tions with substantial data gaps.

4.1. Implications of inferred hydrologic alternation

We illustrate the utility of the GC approach by evaluating the impact
of the Tucurui dam on the hydrology of the Tocantins River in the
Brazilian Amazon. Unsurprisingly, model results revealed clear and per-
vasive up- and downstream dam impacts on riverine hydrology. Similar
to findings from the Mekong (Cochrane et al., 2014), we found consis-
tently higher dry-season water levels for both upstream and down-
stream gauges after dam construction. These results suggest that low-
lying areas that were seasonally dry before dam construction are likely
to be flooded for longer periods of time or even permanently, a com-
monly observed phenomenon on dammed rivers (e.g., Forsberg et al.,
2017; Poff and Olden, 2017). Beyond increased flooding, these hydro-
logical changes represent a major disturbance of the flood pulse (Junk
et al., 1989), with consequences for nutrient and sediment transport
(Schindler and Smits, 2017), aquatic habitat availability and distribution
(Richter et al,, 1997), and river/floodplain biogeochemistry (Campo and
Sancholuz, 1998) and geomorphology (Park and Latrubesse, 2017). In
particular, the loss of dry season water level minima restricts floodplain
colonization by taxa that require seasonal drawdown for successful re-
production (Kaplan et al., 2010), while longer and deeper flooding alters
river and floodplain biogeochemical cycling by promoting the produc-
tion and efflux of methane (dos Santos et al., 2017; Kemenes et al.,
2007; Sawakuchi et al., 2014).

In additional to substantially higher water-levels during the dry sea-
son, upstream gauges also showed a substantial shift in the timing and
rate of drawdown after the annual pulse, as well as a longer duration
of high-water conditions. Changes in the magnitude, timing, and dura-
tion of annual extrema have been shown to disrupt fish spawning
cues (Neasje et al., 1995) and negatively impact fish recruitment and
production in the Amazon and other tropical rivers (Sabo et al., 2017;
Suzuki et al., 2009). Beyond affecting habitat, seasonal water level
changes also alter fish catchability and effort (Isaac et al., 2016; Lima
etal, 2017), suggesting that the observed dam impacts on water level
and seasonality likely impact local livelihoods and economies connected
to ecosystem function. The hydrologic impact of the dam was evident as
far as 176 km away from the dam (gauge 2905), highlighting the wide-
spread impacts of dams even far from the directly impacted reservoir
area. There were also signs of potential impact in a tributary of the

Tocantins (gauge 2910). While data sparsity and model limitations do
not support unequivocal attribution of these discrepancies to the
Tucurui dam, these tributary impacts are most likely due to backwater
effects from increased dry-season water-levels in the Tocantins River.

These results are concordant with the analysis by Timpe and Kaplan
(2017), who used the Indicators of Hydrologic Alteration (IHA) method
(Richter et al., 1996) to quantify dam-induced hydrologic change in the
Brazilian Amazon and analyzed many of the gauges used in this study
(from downstream to upstream: 2970, 2920, 2905, 2885, 2370, and
2360; Fig. 1). As in our study, Timpe and Kaplan (2017) found large
and significant impacts to the hydrologic regime from the Tucururi
dam for gauges 2970 and 2920 (i.e., the closest downstream and up-
stream gauges), with overall hydrologic alteration (HA) of 39 and 25%,
respectively. Downstream of the dam (gauge 2970), Timpe and
Kaplan (2017) found the largest flow regime changes for IHA groups
2,4 and 5, which describe the magnitude and duration of annual low-
and high-water conditions, the frequency and duration of high and
low pulses, and the rate and frequency of water condition changes, re-
spectively. Specifically, within IHA group 2, they saw the largest down-
stream changes in flow minima (increases of 71, 72, 69, and 60% for the
1-,3-, 7-,30-, and 90-day minima) and only small changes (<20%) for all
measures of flow maxima (Timpe, 2016). Other large and significant
changes detailed in Timpe (2016) include increases in low pulse count
and duration (group 4) of 200 and 93%, respectively, and an increase
in the number of reversals (group 5) by 160%. While these results are
not directly comparable to our study due to differences in temporal res-
olution (i.e., daily data for IHA and monthly data here which preclude,
for example, estimating reversals), they mirror our findings of impor-
tant downstream changes to flow metrics dominated by increased
dry-season water level and flow (Figs. 5a-b and 6).

Upstream of the dam (gauge 2920), Timpe and Kaplan (2017) re-
ported the greatest changes in IHA groups 1, 2, and 4, where group 1 de-
scribes the magnitude of monthly flows, and the other two groups are
noted above. For group 1, Timpe (2016) lists the largest changes for me-
dian monthly flows in June through October (increases of 29, 81, 119,
74, and 33%), which correspond to the higher-than-expected water
levels we identified during falling limbs and dry seasons (Figs. 5c and
6). As with downstream gauge 2970 and concordant with our results,
Timpe (2016) also notes substantial increases in flow minima (31 to
42%) and smaller changes (<20%) in maxima, all of which are consistent
with increased water levels caused by backwater from the maintenance
of surface water elevation in the reservoir. Finally, Timpe and Kaplan
(2017) found hydrologic alteration at gauge 2905 to be relatively low
(overall HA of 10%), whereas our results indicate significant increases
in water levels during the low-water season and altered flow seasonal-
ity (Figs. 5d and 6). This difference suggests that, in addition to
circumventing stationarity issues inherent in IHA, the GC approach
may also be able to identify important hydrological changes that indica-
tor methods like IHA may not identify.

Defining what represents an “acceptable” level of hydrological alter-
ation across river systems and for a range of ecosystem services and im-
pacted species remains an overarching challenge in ecohydrology (Poff
and Zimmerman, 2010; Williams, 2018). While comprehensive flow-
ecology frameworks like the Ecological Limits of Hydrological Alteration
(ELOHA) method (Poff et al., 2010) provide a robust framework to orga-
nize hydrologic information, their ability to empirically connect flow re-
gime and ecosystem response has been mixed (McManamay et al.,
2013), and they have been most successful for connecting flow alter-
ation and aquatic invertebrate communities (e.g., Solans and Garcia de
Jalon, 2016). Moreover, in regions where biological data are scarce,

Fig. 5. Comparison of counterfactual predictions (grey shaded regions) and observed water level (blue line) for five gauges (ordered top to bottom from downstream to upstream of the
Tucurui dam). The yellow and red vertical lines depict the initiation and completion of the Tucurui dam construction, respectively. The dashed black vertical line depicts the end of the data
used to train the model and the beginning of the prediction period. The period between the black and red lines corresponds to the validation period. Observations that do not fall between
the 95% counterfactual credible intervals are highlighted with red circles. Green horizontal lines show the range of the data used to train the model. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Comparison of counterfactual predictions and observations for water level during the dry season (left panels) and timing of water-level decline (right panels) for five gauges
(ordered top to bottom from downstream to upstream of the Tucurui dam). Red lines and numbers depict the difference in median observed and predicted values. Results are shown
separately for the pre-dam and post-dam operation periods and are based only on years with water-level data for all 12 months. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

hydrologic alteration methods may be the only tool available (Timpe,
2016). In this context, the question of how much dry season water levels
can increase and drawdown timing be altered in the Tocantins without
negatively affecting the ecosystem depends largely on what ecosystem
element is considered and remains an open question. Some of the most
pervasive and detrimental changes to riverine ecology on the Tocantins
have been from losses to fish diversity and fisheries production (Akama,
2017; de Mérona et al., 2001; Ribeiro et al., 1995), which are likely
driven by both flow alteration and disruption of medium- and long-
distance fish migration (e.g., Winemiller et al., 2016). Additional re-
search is required to better understand the combined effects of flow al-
teration and riverine fragmentation on riverine ecology (Anderson et al.,
2018).

4.2. Comparison to standard impact assessment methods

The main advantage of before and after comparisons is their simplic-
ity and ease of interpretation. Applications of this approach have pro-
vided considerable insights regarding hydrologic alterations induced
by dams across the Brazilian Amazon (e.g., Timpe and Kaplan, 2017)
the United States (Magilligan and Nislow, 2005; Pyron and Neumann,
2008; Richter et al., 1998), and around the globe (Maingi and Marsh,
2002; Schneider et al., 2013; Yang et al., 2012). However, besides the
questionable validity of the stationarity assumption (as evidenced by
the long-term trends in precipitation, land use/land cover, and river dis-
charge in the region, reported elsewhere; Coe et al., 2011; Nobre et al.,
2016; Silverio et al., 2015), these comparisons also often require rela-
tively long-term and complete datasets. For example, studies from
arid and temperate climates suggest using at least 20 years of pre- and
post-dam data (Richter et al., 1997). Timpe and Kaplan (2017) showed

that the record length required for before and after comparisons in the
Amazon can be as long as 37 years, with longer records required for
lower-flow and higher-elevation rivers. Critically, the approach we pro-
pose here can be used to identify statistically significant alteration im-
mediately following an impact, without requiring any prescribed
length of post-impact data.

To avoid the stationarity assumption inherent to IHA and other
indicator-based methods, regression models have been extensively
used to predict river water-level based on climate and water-level var-
iables (Brown et al., 2005; Scott and Lesch, 1997). However, these re-
gression models can have limited utility in situations with substantial
missing data on predictor variables. For example, while the complete
data multiple regression (CDMR) approach performed relatively well
for all but one station based on the Nash-Sutcliffe coefficient, this
model was only able to make 83% of the required predictions during
the validation period and resulted in 95% predictive intervals with
poor coverage compared to the GC model (Table 1). One potential alter-
native approach to the missing-data problem is to rely on a two-stage
procedure, in which data gaps in covariates are first filled and then a
multiple regression approach with the filled covariates is used to
make predictions of the counterfactual. However, coherently propagat-
ing the uncertainty associated with these imputed values to the final
predictions of water-level is not straightforward in this two-stage pro-
cedure. In contrast to these two-stage methods, the GC approach coher-
ently captures the uncertainty associated with data gaps and
predictions within a single modeling step, which is critical if the goal
is to identify dam impact based on statistically significant differences
between observations and predictions.

An alternative way to assess impact on riverine hydrology is to use
physically-based rainfall-runoff models (Devi et al., 2015). While there
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are well-acknowledged issues with the application of physical models
for hydrologic prediction (e.g., Beven, 1989; Beven, 1993), spatially dis-
tributed, numerical watershed models have been widely applied to sim-
ulate spatiotemporal streamflow dynamics for decades, including in the
Amazon (Coe, 2000; Coe et al., 2008; Lima et al., 2014; Pontes et al.,
2017; Sorribas et al., 2016). Properly calibrated and validated physically
based watershed models (Calver, 1988) inherently avoid the station-
arity assumption and could be used to predict counterfactual river
flows and levels in dammed systems. However, watershed models re-
quire substantial effort, data, and specialized expertise to build, verify,
and run (Korfmacher, 2001). The investment in time, personnel, and
data required to develop and apply these models often exceeds avail-
able resources in regions where EIAs are being carried out, and in
some cases, the required data are simply not available. For example,
most standardized land use/land cover remote sensing products for
the Amazon region only cover from 2000 onwards (e.g., Hansen et al.,
2013; INPE, 2018; MAPBIOMAS, 2018), precluding their use for the
Tucurui dam. Importantly, existing physical models developed for the
Amazon have not taken dam operation into consideration. In this con-
text, a statistical method like the proposed GC model might be an attrac-
tive option, given that it is more straight-forward to implement (when
compared to a physically-based rainfall-runoff models), while also re-
quiring less data. While the GC model has been applied here to a single
case of altered hydrology, this approach is potentially useful for deter-
mining the counterfactual in impact assessments of any time structured
variable.

4.3. Model limitations

There are several potential limitations of our method for assessing
dam impacts. First, the semi-parametric approach that we adopt to en-
sure that each variable is marginally normally distributed restricts pre-
dictions to be within the range of the data used to train the model. We
do not view this as a critical limitation because, in our case study,
most of the discrepancies between the observed and predicted water
levels detected were well within the range of the training data. Second,
high collinearity between predictor variables is often an important con-
cern when applying regression models. However, we note that high col-
linearity is problematic when the research goal is attribution
(i.e., determining how each predictor variable influences the response
variable). Given our focus on assessing impacts, our primary interest is
in model prediction rather than attribution, limiting this issue in our
context. Moreover, collinearity does not necessarily decrease predictive
skill (Morrissey and Ruxton, 2018), as evidenced by the high out-of-
sample predictive ability of the GC model for the validation period
(Table 1).

Third, we assume that climate variables (temperature, humidity,
and rainfall) are not impacted by dams or their reservoirs, however it
has been suggested that the construction of dams can increase defores-
tation rates, which in turn may potentially reduce regional rainfall
(Stickler et al.,, 2013). We believe that accounting for this indirect dam
impact on river hydrology and ecology is an important area for future
research but is beyond the scope of this work. Fourth, similar to BACI de-
signs, our method relies on the identification of appropriate control
gauges. This is not a simple task, given that dam-induced changes in
the hydrologic regime may occur even at long distances from the dam
(e.g., gauge 2905, which is 176 km away from Tucurui). During prelim-
inary analysis, we experimented with different sets of potentially im-
pacted gauges and examined the corresponding model results to see if
there were clear signs of dam impact. In general, we took a conservative
approach, preferring to err on the side of assuming more gauges were
potentially impacted, because this is less likely to bias the impact evalu-
ation than incorrectly assigning a truly impacted gauge as a control
gauge. Nevertheless, additional research is needed to develop methods
to robustly identify suitable control gauges.

The fifth limitation of our study is a lack of consideration for land-use
land-cover (LULC) change in the region, given that LULC is a primary
mediator of the relationship between rainfall and river flow (Costa
et al, 2003). Indeed, there has been widespread clearing of native veg-
etation in this watershed and both empirical observations and numeri-
cal modeling throughout the region suggest that these LULC changes
reduce evapotranspiration, increase river discharge, and changed flow
seasonality (Coe et al.,, 2011; Silverio et al., 2015). Unfortunately, most
standardized LULC remote sensing products for the region only cover
from 2000 onwards (e.g., Hansen et al., 2013; INPE, 2018;
MAPBIOMAS, 2018), precluding their use in our models. Nevertheless,
we believe that some LULC effects are probably captured indirectly in
the water level data from control gauges. Furthermore, we also note
that large-scale LULC changes likely to impact river water level are
slow when compared to the abrupt changes immediately upon dam op-
eration depicted in Fig. 5, suggesting that the discrepancies between
predicted and observed water levels in the years immediately following
dam operation are unlikely to be attributable to LULC changes.

5. Conclusions

Giving the global boom in hydropower dam construction (Anderson
et al, 2018; Finer and Jenkins, 2012; Winemiller et al,, 2016; Zarfl et al.,
2015), improving our understanding of how dams influence river hy-
drology, and consequently impact riverine ecohydrology and ecosystem
services, will be increasingly important for preventing and mitigating
these impacts. We propose and apply a Gaussian Copula (GC) model
to quantify the environmental impact associated with the Tucurui
dam, a method that successfully circumvents substantial data gaps
and the stationary assumption inherent to many environmental impact
assessment methods. The comparison of the predicted to the observed
water-level for the post-dam period reveals that the Tucurui dam re-
sulted in substantial alteration of the flood pulse, with much higher
dry-season water levels both upstream and downstream of the dam
and delayed and extended duration of wet-season drawdown. Future
research could focus on determining the generalizability of these find-
ings for other large dams in the region, while accounting for land-use/
land-cover change, and developing methods to more objectively deter-
mine control gauges. Flexible statistical models like GC models provide
the ability to combine disparate time-series data to rapidly assess and
attribute hydrologic changes to infrastructure and other anthropogenic
phenomena in regions where data and/or physical modeling expertise
are scarce and thus have wide utility for quantifying these impacts on
riverine hydrology worldwide.
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