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A B S T R A C T   

Nitrate leaching from agricultural fields is a significant contributor of groundwater pollution globally, threat
ening drinking water resources and downstream ecosystems. Quantifying nitrate leaching driven by variable 
climate, soils, and management practices is challenging, but it is critical for developing sustainable agricultural 
production systems. While irrigation and fertilizer “best management practices” (BMPs) have been widely 
implemented to reduce agricultural nitrate leaching, their ability to meet environmental protection goals remains 
uncertain. In this study, we used the Soil and Water Assessment Tool (SWAT) to simulate crop yields and nitrate 
leaching for corn-peanut rotations under a variety of nutrient and irrigation management practices in the 
Suwannee River Basin (Florida), where groundwater feeds springs that are protected by a federally mandated 
nutrient criteria of 0.35 mg/L Nitrate-Nitrogen (NO3-N). Data from a field experiment of nine irrigation and 
nitrogen (N) management treatments were used to calibrate SWAT, with good to excellent results (Nash Sutcliffe 
Efficiencies from 0.72 to 0.97 for soil moisture, 0.85–0.96 for crop yield, 0.48–0.96 for crop N uptake, and 
0.15–0.82 for soil nitrate). The calibrated model was then used to quantify differences in crop yields, irrigation 
applied and nitrate leaching among practices over a range of historical weather. Soil moisture sensor-based 
irrigation with 246 kg N/ha for corn and 0 kg N/ha for peanut had no statistical difference in yields 
compared to common practices in the region (calendar-based irrigation, fertilization of 336 kg N/ha corn and 17 
kg N/ha peanut), while reducing N leaching by 40% and irrigation applied by 45% (reductions of ~70 kg N/ha/ 
yr and ~300 mm/year, respectively). Planting a rye cover crop reduced leaching by an additional ~50 N/ha/yr 
for all treatments. These results show the potential for widespread adoption of nutrient and water conservation 
practices to achieve the reductions in NO3-N load needed to meet environmental and regulatory goals without 
impacting crop yields.   

1. Introduction 

Agricultural intensification and extensification to meet the food de
mands of a growing global population has led to elevated groundwater 
pumping and nitrogen (N) fertilizer usage worldwide (Spalding and 
Exner, 1993; Vitousek et al., 1997). Synthetic and animal waste-based N 
fertilizers are used in most agricultural operations to enhance plant 
growth (Motavalli et al., 2008), but excessive application may increase 
the risk of nitrate loading to groundwater (Singh et al., 1995; Nolan and 
Ruddy, 1996; Erisman et al.,2008). The adverse effects of elevated 

nitrate concentrations on human health (De la Monte et al., 2009) and 
the environment (Mitsch et al., 1999; Bowen et al., 2007) have 
prompted regulators to establish limits of allowable nitrate concentra
tion in groundwater and surface water. Meeting these criteria can be 
challenging since they often require widespread changes in water and 
nutrient management practices, and the effects of these changes can take 
decades to manifest in receiving waters (Vero et al., 2017; Van Meter 
et al., 2018). Local assessment and modeling of management practice 
changes that provide for agricultural sustainability while maintaining 
groundwater quality are thus necessary to develop informed and 
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effective watershed management strategies. 
Connectivity between agricultural lands and the underlying aquifer 

plays a significant role in the mass of nitrate leaching to groundwater 
(Kellman and Hillaire-Marcel, 2003). Important factors include soil 
drainage characteristics, depth to water table, crop type and mass of N in 
applied fertilizer. Nitrate concentrations are typically higher under 
agricultural fields with well-drained soils overlying highly permeable 
aquifers (Nolan, 2001). For example, high concentrations of nitrate are 
often found in karst aquifers, where discrete fractures and conduits can 
rapidly transmit large volumes of nitrate-enriched water with little 
attenuation (Vesper et al., 2001, Doerfliger et al., 1999). The vulnera
bility of karst aquifers to nutrients from agriculture has been 
well-documented (Boyer and Pasquarell, 1995, 1996; Panno et al., 2001, 
Peterson et al., 2002); however, effective management strategies to 
minimize the nitrate loading to karst aquifers must be developed 
considering local economies and hydrogeologic settings (Coxon, 2011). 
Development and application of robust models to support 
decision-making is especially important in karstic regions, where wide 
variation in travel times can cause lags of years to decades between 
practice implementation and surface water quality improvement (Meals 
et al., 2010; Amin et al., 2017; Fenton et al., 2017). 

The karstic Upper Floridan aquifer (UFA) is one of the most pro
ductive aquifers in the world. It is the major source of public water 
supply and irrigation in north and central Florida (Bush and Johnston, 
1988), supporting a productive agricultural economy and supplying 
more than 10 million people with drinking water. Large portions of the 
UFA are characterized by unconfined, hydraulically connected carbon
ate rocks with high permeability and transmissivities, which allow nu
trients to leach into the aquifer and quickly travel long distances (Bush 
and Johnston, 1988; Arthur et al., 2007). Agriculture and silviculture 
are the predominant land uses in the Suwanee River Basin (SRB) that 
overlies the UFA in north Florida. Increases in population and changes in 
land use across Florida have shifted the SRB toward more intensive 
agriculture practices such as row crops, cow-calf operations, dairy and 
poultry farms (FDEP, 2012), which has resulted in increased 
nitrate-nitrogen (NO3-N) concentrations in the UFA (FDACS, 2015, 
2018; Harrington et al., 2010; Hochmuth et al., 2014). The region also 
has a high density of large freshwater springs, supplied with water from 
the UFA. Nitrate-N concentrations in UFA springs have increased over 
the last 40 years from background concentrations of ≤ 0.1 mg/L NO3-N 
to above 5 mg/L NO3-N in some springs (Katz, 2004; Katz et al., 1999; 
Heffernan et al., 2010). 

In response to increasing NO3-N concentrations and spring 
ecosystem degradation, a Numeric Nutrient Criteria (NNC) of 0.35 mg/L 
NO3-N was set for water emanating from UFA springs (62-302.530 (47) 
(b), F.A.C.; FDEP, 2013). Total Maximum Daily Loads (TMDLs; EPA, US 
Environmental Protection Agency, 2016) required to achieve the NNC 
were then estimated, and Basin Management Action Plans (BMAPs) 
required to meet the TMDL have been established for UFA springs not 
meeting the NNC. Current BMAPs for the SRB estimate that synthetic 
fertilizer is the largest NO3-N source to springs and specify load re
ductions ranging from 35% (FDEP, 2012) to 88% (FDEP, 2018) to meet 
the NNC. In this regulatory setting, a quantitative assessment of the ef
fects of alternative water and nutrient management practices on crop 
yield, irrigation water requirements, and NO3-N leaching is needed to 
determine whether adoption of agricultural BMPs can achieve the load 
reductions mandated to achieve the NNC. Critically, NNC have been 
partially or fully developed for 29 US states and territories (EPA, US 
Environmental Protection Agency, 2016) and are widely adopted across 
Europe as part of the European Water Framework Directive (Poikane 
et al., 2019). Across regions, developing effective nutrient mitigation 
approaches to meet these environmental standards while also meeting 
human food demand is a grand global challenge (Robertson and Swin
ton, 2005; Davidson et al., 2015) with agricultural water management at 
its core. 

Agricultural BMPs have been widely proposed to reduce adverse 

water quality impacts both globally (Liu et al., 2017) and in the SRB 
(FDEP, 2012). However, determining the effectiveness of these practices 
for reducing N leaching and meeting regional water quality goals is an 
on-going challenge due to difficulties in quantifying nutrient fate and 
transport processes (Chaubey et al., 2010). For instance, measuring N 
fertilizer transformations and losses (e.g., leaching, volatilization and 
denitrification) is expensive, time-consuming and difficult due to vari
ability in weather, soil properties and agricultural management prac
tices across fields (Mulla et al., 2004). Given these challenges, computer 
simulation models are commonly used to leverage field observations and 
improve estimates of the fate and transport of water and nutrients (Xie 
et al., 2015). However, data-intensive model calibration and validation 
for the specific soil, climate and agricultural management conditions 
being modeled must be performed for models to be effective (Ramos and 
Carbonell, 1991) and trusted by stakeholders (Karki et al., 2019). 

This work leverages a uniquely robust experimental dataset (Zamora 
et al., 2018, 2020) to provide quantitative estimates of long-term 
changes in crop yield, water use, and NO3-N leaching under alternate 
management scenarios. This effort is part of longer-term project that is 
bringing together scientists, regulators, agricultural producers, and 
non-governmental organizations to collaboratively evaluate tradeoffs 
among crop production, water quality, and water quantity associated 
with alternative land use and land and water management strategies. 
The coupled SWAT-MODFLOW model (Aliyari et al., 2019; Wei et al., 
2018) was selected as the platform for this analysis because complex 
surface-groundwater interactions in the karst watershed require explicit 
modeling of the groundwater system and its interaction with surface 
waters, which are not rigorously represented in typical agricultural 
watershed models such as SWAT (Arabi et al., 2008; Bieger et al., 2014; 
Cerro et al., 2014; Gassman et al., 2014; Francesconi et al., 2016), 
AGNPS (Young et al., 1989) or EPIC (Williams et al., 1989). Thus, the 
immediate goal of this study was to assess whether SWAT can provide 
reliable groundwater recharge and nutrient leaching fluxes to MOD
FLOW, while also producing accurate crop yields for subsequent 
economic-environmental tradeoff analyses. While other field-scale 
agricultural models (e.g., DSSAT [Jones et al., 2003]; HYDRUS 1-D 
[Simunek et al., 2008]; Leaching Estimation and Chemistry Model 
[Hutson and Wagenet, 1992]; and Root Zone Water Quality Model 
[RZWQM, USDA-ARS, 1992a]) may be more biophysically rigorous than 
SWAT, none of these models are integrated with hydrologic models that 
can simulate the complex watershed-scale surface water-groundwater 
interactions that are important in the study area. 

The overall goal of this study was to use SWAT to simulate the long- 
term response of crop yield, crop N uptake, irrigation requirements, and 
NO3-N leaching under different irrigation, N fertilization, and cover crop 
management practices for a corn-peanut rotation, the most common row 
crop rotation in the SRB (USDA 2012). Specific objectives were to: (1) 
calibrate SWAT using observations from a three-year irrigation and N 
fertilizer rate management experiment for a corn-peanut rotation con
ducted in Live Oak, Florida (Zamora et al., 2018, 2020); (2) evaluate the 
long-term effects of the experimental irrigation and fertilization treat
ments on annual yield, N uptake, irrigation applied, and NO3-N leaching 
using calibrated parameters over a 39-year (1980–2018) historic 
weather record; and (3) estimate the effect of planting a rye cover crop 
on NO3-N leaching, irrigation water use, and yield in corn-peanut ro
tations. Future studies will aggregate these practices to the watershed 
scale to determine the ability of changes in agricultural management 
practices to achieve the NO3-N loading reductions required to meet the 
federally mandated NNC in the SRB. This work provides a framework for 
developing effective, socially acceptable strategies for achieving strin
gent water quality regulations while maintaining a robust agricultural 
economy that is transferrable to other agricultural watersheds 
throughout the world. 
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2. Materials and methods 

2.1. Study area and experimental design 

The experimental field site is located at the North Florida Research 
and Education Center – Suwannee Valley (NFREC-SV), near Live Oak, 
Florida (30.31 N, − 82.90 W, Fig. 1). The field is at an elevation of 
49–50 m above mean sea level and has flat topography with an average 
slope of less than 0.5%. The site consists of three types of well-drained 
soil: Chipley, Hurricane and Blanton sand (SSURGO (Soil Survey 
Geographic database), NRCS 2016). Soils in the southern portion of the 
site are mostly Chipley, while those in the northern portion are mostly 
Hurricane (Fig. 1). The site was divided into two systems based on the 
timing of rotation. System 1 (southern portion of the site) was a corn- 

peanut-corn rotation planted during 2015–17, and System 2 (northern 
portion) was a peanut-corn-peanut rotation grown during the same 
period. In this manuscript results and analysis from System 1 are pre
sented in detail; results from System 2 were very similar and are thus 
summarized in the body of the paper and fully documented in the 
Supplemental Material. 

Systems 1 and 2 were divided into four blocks (i.e., replicates B1-B4), 
each containing fifteen 12.2 m x 6.1 m (74.4 m2) plots (Fig. 1). Each 
plot received a different irrigation management strategy (n = 5) and N 
fertilizer rate (n = 3) resulting in 15 treatments, each with 4 replicates. 
In this study, the subset of these plots that had most field observations 
were selected to develop the model. This subset included 9 treatments (3 
irrigation methods and 3 fertilizer rates; Table 1). Complete documen
tation of the field experiment can be found in Zamora et al. (2018). 

The three irrigation methods consisted of calendar-based irrigation, 
soil moisture sensor-based irrigation and no irrigation (rainfed). 
Calendar-based irrigation for corn consisted of no irrigation for the first 
30 days after planting (DAP), unless severely windy conditions caused 
blowing sand to burn the plants. Beginning on 31 DAP, a target amount 
of 25 mm/week was established that could be made up of rain or irri
gation, if rain events were > 13 mm. For 40–59 DAP, a 41 mm/week 
target was established. One irrigation event was skipped if 13–20 mm 
rainfall occurred, and two irrigation events were skipped if > 20 mm of 
rain occurred. For 60–105 DAP a 61 mm/week irrigation target was 
used. One irrigation event was skipped if 13–25 mm of rain occurred the 
day prior to a scheduled irrigation, and two irrigation events were 
skipped if > 25 mm of rain occurred. Finally, around 105 DAP at full 
dent stage, weekly irrigation targets were reduced to 41 mm/week for 
one week and 20 mm/week for another week until finally irrigation was 
terminated at 115 DAP. Individual irrigation events were 13 mm. 

A similar calendar-based irrigation schedule was applied during the 
peanut growing season. This consisted of no irrigation from 0 to 30 DAP; 
from 31 to 44 DAP 25 mm/week was applied unless rainfall provided 
target irrigation amount; from 45 to 64 DAP 38 mm/week was applied, 
however if rainfall between 13 and 19 mm occurred one irrigation event 
was skipped and if rainfall > 19 mm occurred two events were skipped. 

Fig. 1. Site map showing layout of the experimental site with highlighted (blue, red and purple) plots considered in this study. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Irrigation and N fertilizer treatments for the nine treatments in Systems 1&2.  

Irrigation treatment Irrigation applied (mm) N fertilizer rate  

2015 2016 2017a Rate (kg N/ha) 

Corn          
Calendar  330  490  546 High  336        

Medium  246        
Low  157 

Soil Moisture  
Sensors (SMS)  

151  291  302 High  336        

Medium  246        
Low  157 

Rain fed  15  25  48 High  336        
Medium  246        
Low  157 

Peanut 
Calendar  132  555  368    
SMS  25  205  122   17b 

Rain fed  0  30  20     

a In 2017, due to leaching rainfall events occurring early in the season, an 
additional 17 kg N/ha were applied to each corn N fertility rate. 

b No difference in N fertilizer rate for peanut. 
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Finally, from 65 to 135 DAP 51 mm/week was applied, one irrigation 
event was skipped if 13–25 mm of rain occurred, and two irrigation 
events were skipped if > 25 mm of rain occurred. Individual irrigation 
events were 10 mm. 

For the soil moisture sensor (SMS)-based irrigation scheduling, the 
volumetric soil water content (VWC) was monitored continuously using 
sensors. Irrigation was triggered when the maximum allowable deple
tion (MAD) was 50% of the difference between field capacity (FC) and 
permanent wilting point (PWP). The irrigation volume required to refill 
the active root depth to field capacity was estimated according to 
guidelines proposed by Zotarelli et al. (2013). Active root depth was 
varied throughout the season based on root development. 

The three N fertilizer treatments consisted of high, medium and low 
application rates (336, 246 and 157 kg N/ha for corn, respectively). The 
high fertilizer application rate of 336 kg N/ha for corn and 17 kg N/ha 
peanut, is a common grower practice in the region (Zamora et al., 2018). 
The medium rate closely follows the University of Florida Institute for 
Food and Agricultural Sciences (UF-IFAS) recommendations (235 kg N 
/ha for irrigated corn and 0 kg/ha for peanut; Hochmuth et al., 1992; 
Mylavarapu et al., 2015). The low N represents the minimum N required 
to establish the corn crop in the low water holding capacity, low organic 
matter and low cation exchange capacity sandy soils at the field site. For 
corn an extra application of up to 17 kg N /ha was made within the first 
four weeks after planting if 76–100 mm of rainfall occurred in a week 
(FDACS, 2015). The fertilizer composition and application schedule is 
presented in Table S1. 

2.2. Data collection and processing 

Table S2 summarizes the type, location and frequency of data 
collected from each plot. Soil moisture content was obtained from 
Sentek drill and drop capacitance probes (Sentek Pty Ltd 2003) installed 
in three replicates (blocks 2, 3 and 4) in each of the nine treatments 
(Fig. 1). Each probe consists of nine sensors placed every 100 mm in
terval up to 900 mm. Probes recorded data every 30 min, which were 
averaged to daily values of soil moisture storage for comparison with 
SWAT daily output. The Sentek probes were calibrated at the factory. 
After installation at the field site the Sentek soil moisture measurements 
were checked against observed volumetric water content (estimated 
using gravimetric water content measured from soil cores within the 
same replicate and bulk density measured at the field site) to verify the 
factory calibration and establish their reliability for use in model cali
bration and validation. Soil Nitrate-N was collected from all plots at four 
depths (0–150, 150–300, 300–600 and 600–900 mm) throughout the 
rotation. Aboveground biomass and nitrogen uptake were collected at 
key growth stages from all plots under SMS-based irrigation. Detailed 
information about the data collection procedures is provided in Zamora 
et al. (2018). Soil properties measured at the site are summarized in 
Table S3. 

2.3. Model description 

SWAT is a semi-distributed, continuous, process-based watershed- 
scale model used to evaluate the impact of different land management 
practices on surface and subsurface water quality and quantity, sedi
ment, and agricultural yields (Arnold et al., 1998; Neitsch et al., 2004; 
Gassman et al., 2014). For spatial representation, SWAT delineates a 
watershed into hydrological response units (HRUs), which are homog
enous regions with similar slope, land use and soil type (Neitsch et al., 
2011; Winchell et al., 2013). HRUs can be used for field or plot-level 
estimation of nitrate leaching, crop yield, evapotranspiration and 
other management practice assessments (Neitsch et al., 2004; Anand 
et al., 2007; Gitau et al., 2008; Sinnathamby et al., 2017; Moloney et al., 
2015; Cibin et al., 2015; Karki et al., 2019). 

SWAT has two infiltration schemes: The Curve Number (CN) method 
at daily intervals and the Green-Ampt method when hourly precipitation 

data are available; CN-based infiltration was used in this study. SWAT 
simulates the movement of infiltrated flow between soil layers using a 
storage routing (tipping bucket) method, which allows downward 
movement or percolation of saturated flow when field capacity of a soil 
layer is exceeded and the underlying layer is not saturated (Arnold et al., 
2012; Mapfumo et al., 2004). Soil moisture distribution below field 
capacity is governed by plant water uptake and soil water evaporation 
through two parameters, the soil evaporation compensation coefficient 
(ESCO) and the plant uptake compensation factor (EPCO), respectively 
(Vazquez-Amabile and Engel, 2005; Neitsch et al., 2011). The crop 
growth algorithm in SWAT is based on the Environmental Impact Policy 
Climate (EPIC) crop growth model (Williams et al., 1989; Neitsch et al., 
2004). SWAT calculates the potential growth of the plant for each day as 
a function of solar radiation and leaf area index (LAI). Actual growth and 
LAI are dependent on stress factors including water, temperature and 
nutrient stress. SWAT computes the accumulation of heat units until the 
crop attains maturity, after which crop growth ceases (Nair et al., 2011). 

2.4. Model setup 

In this study, SWAT (version 2012/Rev664) was applied at the plot 
scale for the calibration and validation of soil and crop parameters 
following the approaches of Anand et al. (2007), Maski et al. (2008), 
Marek et al. (2016, 2017) and Chen et al. (2017). The experimental area 
(Fig. 1) was auto delineated into one basin with three HRUs (one per 
irrigation treatment) using the USGS 30 m DEM (Digital Elevation Map), 
USDA NRCS SSURGO soil map and USDA NASS Cropland Data Layer 
(CDL). These HRUs were converted to plots of equal size (74.4 m2) by 
adjusting the area in the sub basin input file and the fraction of area of 
HRU in the HRU input file (Marek et al., 2016; Moloney et al., 2015; 
Karki et al., 2019). Each HRU was provided with information regarding 
management practices conducted in the experimental study period (e.g., 
planting date, irrigation and fertilizer schedules and harvest date). The 
default SSURGO soil data of soil bulk density, soil texture and organic 
carbon (%) were replaced with field measurements (Zamora et al., 2018) 
for each HRU (Table S3). The total root zone depth in each HRU was set 
to 900 mm, with four layers (0–150 mm, 150–300 mm, 300–600 mm, 
and 600–900 mm) for consistency with measured soil nitrate depth 
resolution. 

The source of irrigation water at the experimental site is the Upper 
Floridian Aquifer, which is approximately 3 m below land surface 
(USGS, 1983), with no interaction with the root zone. Surface runoff was 
never observed during the experiment at this well-drained site (Zamora 
et al., 2018). Thus, the irrigation source was set to an unlimited source 
outside of the field scale model domain. SWAT daily weather data (i.e., 
rainfall, temperature, solar radiation, relative humidity, and wind 
speed) required for the Penman–Monteith evapotranspiration module 
were obtained from the Live Oak Florida Automated Weather Network 
(FAWN) located at the experimental site (30.305 lat, − 82.898 long, 
https://fawn.ifas.ufl.edu/). Missing data were filled using the SWAT 
weather generator (Neitsch et al., 2011). 

2.5. Calibration methodology 

Crop growth simulation depends on both crop biophysical processes 
as well as soil moisture dynamics, so model calibration and validation 
followed an integrated approach to predict both processes reasonably 
(Wang et al., 2016; Sinnathamby et al., 2017; Yang et al., 2017). The 
data used for calibration versus validation is summarized in Table 3. The 
calibration procedure is detailed below. 

Soil moisture was the first variable to be calibrated with default 
SWAT crop parameters. The Sequential Uncertainty Fitting (SUFI-2) 
algorithm in SWAT Calibration and Uncertainty Procedures (SWAT-CUP 
2012) was used to calibrate and validate the model and the 
Nash–Sutcliffe model efficiency (NSE) was chosen as the objective 
function (Abbaspour et al., 2018). The SUFI-2 algorithm has been 

S. Rath et al.                                                                                                                                                                                                                                     

https://fawn.ifas.ufl.edu/


Agricultural Water Management 246 (2021) 106634

5

extensively used in the calibration of the SWAT model due to its easy 
implementation, high flexibility in selecting parameters and the range 
for calibration, and the reduced number of model runs needed to achieve 
good prediction (Yang et al., 2008; Malago et al., 2015). For this study, 
the methodology recommended in the SWAT-CUP user manual 
(Abbaspour, 2013) and several SWAT-CUP calibration papers (Yang 
et al., 2008; Abbaspour et al., 2015, 2018; Kamali et al., 2017) were 
followed. 

The initial range of soil parameters were selected based on literature 
values (Arnold et al., 2012) and prior experiments conducted on similar 
soils in the region (Zotarelli et al., 2007; Prasad et al., 2015; Prasad and 
Hochmuth, 2016). Sensitivity analysis was carried out within 
SWAT-CUP to determine sensitive parameters to be included in the 
calibration. Sentek soil moisture sensor data was used to calibrate total 
soil moisture storage in the entire root zone (900 mm) at the daily scale 
during the cropping season because currently SWAT-CUP has no pro
vision to calibrate the soil moisture storage for individual soil layers. 
SWAT provides a simulated soil moisture only for the whole soil column 
(output file) which is utilized by SWAT-CUP for the auto-calibration 
process. 

Soil and hydrological parameters were calibrated using daily soil 
moisture storage (total soil moisture from 0 to 900 mm) averaged across 
replicates for each high N irrigation treatment (i.e., Calendar, SMS and 
Rain fed) from 2015 to 2017 (Fig. 1), after a three-year warm up period 
to stabilize the initial hydrological condition. The three high N irrigation 
treatments were selected for calibration to account for spatial variability 
in soil properties across a variety of moisture regimes under the 
assumption of plant growth under no N stress. The calibrated soil pa
rameters were then validated for each irrigation treatment in the me
dium and low N fertilizer treatments. The three calibrated HRUs with 
the high N management schedule were replaced with the medium and 
the low N fertilizer schedule for validation. 

After best-fit soil and hydrological parameters were identified, crop 
parameters were calibrated using the above ground biomass data aver
aged across replicates of the SMS high N treatments (note that biomass 
was measured at key growth stages only for SMS treatments (Table S2)). 
Sensitivity analysis of seasonal biomass growth to SWAT crop parame
ters was conducted to determine the most sensitive parameters, after 
which the sensitive parameters were adjusted to reproduce the observed 
trend of crop growth in the high N fertilizer SMS treatment. Calibrated 
parameter values were validated using data from the low- and medium- 
N fertility SMS treatments. The calibrated soil moisture parameters were 
further verified by re-simulating with the final crop parameters. 

Field-measured harvest indices (i.e., average fraction of final 
biomass removed from the field across the treatment replicates) for the 
SMS and Calendar High N treatments were used to estimate yield for 
both corn and peanut, assuming yields were optimum (without any 
water and nutrient stress (Neitsch et al., 2004) for those treatments. The 

default SWAT nitrogen uptake parameters, PLTNFR-1 (N uptake at 
emergence), PLTNFR-2 (N uptake at 50% maturity), and PLTNFR-3 (N 
uptake at full maturity), and default Nitrogen transformation parame
ters were used in all simulations. The adequacy of these parameters in 
simulating the N balance for the experiment was assessed by comparing 
measured and predicted N uptake by the crop and NO3-N soil concen
trations soil over time for each treatment. System 1 calibrated crop 
parameters were also validated using system 2 data. 

For all comparisons, statistical indices such as Nash Sutcliffe effi
ciency (NSE), Root Mean Squared Error (RMSE) and percent bias 
(PBIAS) were used. NSE and RMSE were estimated accounting for 
replicate measurement variability (Harmel and Smith, 2007; Harmel 
et al., 2010) using the software “FITVAL” (https://abe.ufl.edu/faculty/c 
arpena/software/FITEVAL) developed by Ritter and Muñoz-Carpena 
(2013). These modified statistical indices are denoted here as NSEM, and 
RMSEM. PBIAS was estimated without measurement variability (Moriasi 
et al., 2012). The performance indices were judged based on the criteria 
of satisfactory (NSEM > 0.50) to very good (NSEM > 0.75) set by 
Moriasi et al. (2007, 2012). 

2.6. Development of long-term scenarios 

In order to estimate irrigation requirements, nitrate leaching and 
crop yield over the wider range of historical weather conditions, the 
corn-peanut rotation was simulated for the nine experimental treat
ments using 39 years of North American Land Data Assimilation System 
(NLDAS) historical weather data (1980–2018), using 1980 and 1981 as 
warmup period). In addition, scenarios were developed to estimate the 
potential reduction in nitrate leaching if a rye winter cover crop were 
planted instead of letting the land remain fallow between two subse
quent crops. SWAT default parameters of rye crop was used for long 
term scenario. While many studies have shown that winter cover crops 
have benefits such as preventing soil erosion, improving long term soil 
quality and enhancing carbon sequestration (Basche et al., 2016; Kaspar 
and Singer, 2011; Moore et al., 2014), the impact of cover crops on 
reducing nitrate leaching has not been fully established (Martinez-Feria 
et al., 2016; Dabney et al., 2010; Thorup-Kristensen and Dresboll, 2010). 

A calendar irrigation schedule was developed from the historic 
rainfall data following an approach suggested by University of Florida 
Extension Specialists (Table S4). Sensor-based irrigation was simulated 
with the SWAT auto irrigation option based on plant water demand, 
which triggers irrigation when the ratio of actual transpiration to po
tential transpiration becomes less than the user-defined threshold 
(Arnold et al., 2013). After multiple simulation trials and comparison 
with the experimental soil moisture scheduling irrigation amounts, and 
recommendations from stakeholders, a 0.65 threshold was used for both 
corn and peanut with an irrigation application of 13 mm/day for corn 
and 10 mm/day for peanut. 

Table 2 
Irrigation and N fertilizer management schedule used to perform long-term simulations using historical weather data (1980–2018).   

Baseline scenarioa Cover crop scenariob  

Corn Peanut Rye 

Planting 20 March 12 May 01 October 
Harvest 05 August 27 September Chemically kill cover crop one month before planting corn and 

peanutc 

Irrigation Calendar Irrigation Schedule (Table S4) Calendar Irrigation Schedule (Table S4) None  
SWAT Auto irrigation (12.7 mm per event) SWAT Auto irrigation (10.16 mm per 

event)   
Rain fed (No irrigation) Rain fed (No irrigation)  

Fertilizer N Fertilization rates (low, med, high) schedule (Table S1 
and 1) 

None None  

a Baseline includes a fallow period between cropping seasons (i.e. corn-fallow-peanut-fallow). 
b Cover crop scenario includes rye instead of fallow periods between cropping seasons (i.e. corn-rye-peanut-rye). 
c Harvest and kill option 8 in SWAT, 100% biomass incorporated as residue. 
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Split application of the three N fertilizer rates used in the field 
experiment (Table 1, S1) were applied using ammonium nitrate fertilizer 
as it is a common source of N fertilizer in the region. For simplicity, fixed 
planting and harvesting dates were adopted throughout the simulation 
period (Table 2). Based on local practices and communication with 
Extension Specialists, a rye cover crop planting and herbicide applica
tion schedule was incorporated into the simulations. The agricultural 
management schedule for the corn and peanut rotation with and without 
the cover crop is presented in Table 2. 

3. Results and discussion 

3.1. Model calibration and validation 

Table 4 presents final calibrated values, ranges, and p-values to 
indicate the sensitivity of parameters (p < 0.05 indicates a sensitive 
parameter). Available water content (AWC), Soil Evaporation 
Compensation Factor (ESCO) and Plant Uptake Compensation Factor 
(EPCO) were the most sensitive soil and hydrological parameters. 
Notably, saturated hydraulic conductivity and curve number were not 
sensitive parameters. Best-fit parameters were similar, though not 
identical, between systems (Table 4). 

Total heat units required to reach maturity (HEAT_UNITS) (in this 
experiment maturity for corn was 135 days after planting) and biomass- 
to-energy ratio (BIO_E) were the sensitive crop parameters, which is in 
accordance with previous studies (Abbaspour et al., 2015; Almeida 
et al., 2017; Faramarzi et al., 2009; Kiniry et al., 2002, 2008). Maximum 
potential leaf area index (BLAI) for corn and peanut were assigned to be 
3 and 4 respectively, as specified in the SWAT database (Kiniry et al., 
2002; Almeida et al., 2017). The final ranges of BIO_E for corn and 
peanut were close to ranges included in the SWAT manual (BIO_E corn: 
39–45 and BIO_E peanut: 20–25). The calibrated HEAT_UNITS value for 
peanut (1800) was close to that for Georgia green peanut variety (1900) 
estimated from previous experiments (Bennett et al., 1993; Kiniry et al., 
2005). The optimal harvest index parameter (HVSTI) was set to the 
measured harvest index (the average quantity of biomass removed from 
field as yield) for the SMS and Calendar High N treatments, which was 
0.60 for corn and 0.55 for peanut. The minimum harvest index param
eter (WSYF) was kept at the default value of 0.3 for both corn and 
peanut. 

3.1.1. Soil moisture storage 
Fig. 2 shows modeled and observed soil moisture storage for the 

three treatments used for calibration (SMS, Calendar and Rain fed irri
gation, all under high N fertilization). The range of the observed mea
surements represents the spatial variability of soil moisture across 
replicates for each treatment. Soil moisture validation for the remaining 
six treatments (SMS, Calendar and Rain fed irrigation under medium 
and low N fertilization) for System 1 are shown in Figs. S1 and S2. Plots 
of modeled versus observed soil moisture for System 2 are presented in 
Figs. S6–S8. 

Overall, soil moisture predictions showed satisfactory to very good 
fits (0.67 < NSEM < 0.97) in both calibration and validation treat
ments for both systems (Table 5). However, observed soil moisture peaks 
during high rainfall events were under-predicted in System 1 Calendar 
and SMS treatments across all fertilization rates. These results indicate 
that, although SWAT was able to capture general patterns of soil mois
ture variation across the three growing seasons for both systems, soil 
water drained too rapidly when soil moisture was above field capacity. 
Discrepancies between simulated and observed soil moisture, particu
larly during high rainfall events, due to simplified runoff and percolation 
process in SWAT were also reported by Rajib et al. (2016), Yang et al. 
(2017), and Zhang et al. (2017). SWAT has a simplified approach for 
estimating soil moisture percolation that assumes soil water above field 
capacity in a particular layer percolates to the next layer at a rate gov
erned by the saturated hydraulic conductivity (Neitsch et al., 2011). Ta
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Due to this SWAT model structure and its high sensitivity to available 
water content and low sensitivity to hydraulic conductivity (Table 4), 
the calibrated soil parameters were unable to reproduce some of the 
transient soil moisture peaks measured by the Sentek probes during 
large (particularly multi-day) rainfall events (Fig. 2). However, manu
ally increasing available water content and lowering hydraulic con
ductivity of the soil from the calibrated parameters to try to match the 
peaks resulted in long periods of time where the soil moisture remained 
much higher than the observations, deteriorating the overall model fit 
statistics significantly. In the sandy soils at the experimental site (and 
throughout much of the SRB region), the transient high soil moisture 
drains back to field capacity more slowly than SWAT predicts, but 
typically within a few days, causing this excess water (and any nitrate it 
contains) to eventually leach past the root zone. The fact that nitrogen 
uptake and biomass accumulation by the crop as well as soil nitrate 
storage were adequately predicted by the model (see following sections) 
provides some reassurance that the transient inaccuracies around large- 
rainfall events do not affect the seasonal water and nitrogen mass 
balances. 

With the calibrated Soil Conservation Service Curve Number (SCS- 
CN), the total overland runoff volume generated for the highest runoff 
generating treatment (calendar based irrigation with high N) was 0.77% 
of applied water (precipitation plus irrigation), compared to 54% for ET 
and 46% for percolation below the root zone, generally in conformance 
with the observation of no surface runoff at the field site. The small 
amount of runoff generated by SWAT occurred during large events such 
as Hurricane Irma in September 2017. 

3.1.2. Crop biomass and yield 
Crop growth dynamics for corn and peanut were very well predicted 

(NSEM > 0.95) for the SMS irrigation treatments across both calibrated 
(high-N) and validated (medium- and low-N) fertilizer rates in System 1 
(Table 6, Fig. 3). Validation results for yield for all treatments in System 
1 (Fig. 4) were generally consistent with measured values (all 
NSEM > 0.75); however, in 2017 the model over-predicted both total 
aboveground biomass and yield for rainfed corn under all fertilization 
rates. This may indicate that water stress is under-predicted by the 
SWAT crop parameters that were calibrated using SMS-high N treat
ments. Validation results for crop growth dynamics for System 2 also 
showed very good results for 2015 peanut and 2016 corn 
(0.86 < NSEM < 0.99; Table 6, Fig. S9), but total aboveground 
biomass and yields were not well predicted for any peanut treatments in 
2017 (Fig. S10). Low observed peanut biomass and yield in 2017 were 
associated with crop loss caused by Hurricane Irma that hit the region in 
September 2017. These effects were not captured in SWAT simulations 
that were calibrated under limited stress conditions (Mitteslet et al., 
2015). 

3.1.3. Crop nitrogen uptake 
Modeled N uptake dynamics followed the observed trends well for 

System 1 SMS treatments using default nitrogen uptake parameters 
(Fig. 5 and Table 7). While observed total nitrogen uptake had high 
variability within treatments (last column Fig. 4), System 1 total N up
take predictions reproduced mean observed values quite well (NSEM 
0.48–0.96, PBIAS − 0.1 to 9.7%; Fig. 4). Note that although there was 
no difference in N applied to the System 1 peanut treatments in 2016 
both the observed and simulated peanut nitrogen uptake in 2016 were 
influenced by different irrigation treatments. 

Modeled N uptake dynamics followed well the observed trends for 
System 2 SMS treatments in 2015 and 2016, but N uptake for peanut was 
significantly overpredicted in 2017. This was a result of overprediction 
of biomass and yield since SWAT was not able to correctly predict the 
crop loss that occurred as a result of Hurricane Irma in 2017 (Fig. S11 
and Table 7). For System 2, total N uptake for corn was adequately 
predicted (NSEM 0.63, PBAIS − 8.8%); however, for peanut (N fixation 
plus N uptake from soil) was slightly underpredicted in 2015 (NSEM Ta
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− 9.23, PBIAS 25%) and overpredicted in 2017 (NSEM − 11.44, PBIAS 
− 89.7%) (Fig. S12). 

Overall, SWAT predictions of final biomass, N uptake and yield for 
both systems agreed with the Zamora et al. (2018, 2020) experimental 

results in which the calendar-based and SMS irrigation management 
practices produced statistically higher final biomass, N uptake and yield 
than the rainfed practices. Zamora et al. (2018) found no statistically 
significant differences in final corn biomass across N rates, but 

Fig. 2. Observed and simulated total soil moisture (mm) in root zone (900 mm) during corn-peanut-corn growing seasons for calibrated SMS-High (A), Calendar- 
High (B) and Rain fed-High (C) for System 1. Vertical bars correspond to the standard deviation of measured data. 

Table 5 
Goodness-of-fit indicators (NSEM, PBIAS (%) and RMSEM (mm)) for calibration and validation of total soil moisture.   

System 1 System 2  

Calibration Calibration  

NSEM PBIAS (%) RMSEM  NSEM PBIAS (%) RMSEM 

SMS-High  0.88  − 0.9  6.37 SMS-High  0.94  7  3.64 
Calendar-High  0.72  3.4  9.63 Calendar-High  0.84  0.8  5.86 
Rain fed-High  0.82  − 7.7  8.76 Rain fed-High  0.92  5.3  4.71 
Validation Validation 
SMS-Medium  0.82  − 1  9.62 SMS-Medium  0.86  3.5  7.16 
Calendar-Medium  0.67  − 1.7  12.43 Calendar-Medium  0.96  2.2  3.43 
Rain fed-Medium  0.82  − 12  8.15 Rain fed-Medium  0.93  − 1.8  6.33 
SMS-Low  0.69  − 1.8  12.83 SMS-Low  0.77  5.6  7.87 
Calendar-Low  0.76  − 0.9  9.39 Calendar-Low  0.89  1.6  5.58 
Rain fed-Low  0.83  − 16.1  8.49 Rain fed-Low  0.97  − 0.2  4.73  
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differences in total N uptake were found between the low and the high N 
rates. SWAT predicted both lower biomass and N uptake for the low N 
fertilizer rate. 

3.1.4. Soil nitrate-N 
Time series of System 1 simulated and measured soil nitrate-N in the 

entire root zone (0–900 mm) for Calendar, SMS and Rainfed irrigation 
with high N treatments are shown in Fig. 6. The remainder of the System 
1 treatments are shown in Figs. S3 and S4, and similar results for System 
2 are shown in Figs. S13–S15. For both systems, soil nitrate-N simulated 
using default soil nitrate parameters followed the trend of the observed 
data with NSEM values ranging from 0.55 (satisfactory) to 0.95 (very 
good) for all treatments except the rainfed high fertilizer treatment. The 
Rainfed high fertilizer treatment over-predicted soil nitrate-N for both 
Systems, primarily during the fallow season following corn production 
(NSEM 0.16 and 0.25, respectively; Table 8). As mentioned earlier, 
SWAT overestimated the corn biomass and N uptake for the rainfed case, 
most likely because the SWAT corn parameters used for calibration had 
no water or N stress (i.e., SMS-high treatment). Since 40% of the corn 

biomass is left on the field to mineralize, the erroneously high corn N 
uptake may have led to the erroneously high soil N in the fallow periods 
due to mineralization of plant residues after harvest. 

3.2. Nitrate-N leaching 

Based on satisfactory to very good prediction of simulated crop N 
uptake and soil nitrate-N storage (the only measured components of N 
balance in this study), simulated nitrate-N leaching was compared 
across treatments for the corn-peanut-corn rotation including the fallow 
periods between cropping seasons (System 1, Fig. 7). As expected, the 
high N fertilizer practice (336 kg N/ha) caused more nitrate-N leaching 
to groundwater than the medium and low fertilizer practices (246 and 
157 kg N/ha) in all irrigation management systems. Similarly, the me
dium N rate caused more nitrate leaching to groundwater than the low 
fertilization practice. Somewhat surprisingly, more nitrate leaching 
occurred during the fallow periods between crops than during the crop 
growing seasons across treatments. 

Within the high N fertilizer practice, calendar irrigation caused more 

Fig. 3. Simulated (lines) vs observed (dots) aboveground biomass dynamics for calibrated SMS-High (a) and validated SMS-Medium (b) and SMS-Low (c) for System 
1 (corn 2015-peanut 2016-corn 2017). The experimental variation shown is the minimum and maximum of the field measurements (error bars). 

Table 6 
Modified goodness-of-fit indicators for biomass trend with measurement uncertainty.   

System 1 Biomass trend  
Treatments Corn 2015 Peanut 2016 Corn 2017   

NSEM PBIAS (%) RMSEM (kg/ha) NSEM PBIAS (%) RMSEM (kg/ha) NSEM PBIAS (%) RMSEM (kg/ha) 
Calibration SMS-High 0.99  14.1  820  0.99 − 5.4  182  0.99  − 4.2  733 
Validation SMS-Medium 0.99  17.2  709  0.99 − 10.8  321  0.97  − 4  1440  

SMS-Low 0.99  11  472  0.99 − 10.7  391  0.99  8.3  599  
System 2 Biomass trend  
Treatments Peanut 2015 Corn 2016 Peanut 2017  
SMS-High 0.99  8.8  157  0.86 − 35  3544  − 1.34  − 74.9  3884 

Validation SMS-Medium 0.96  5.3  1109  0.91 − 31  2802  0.17  − 60.6  3230  
SMS-Low 0.99  6.3  0  0.93 − 10.5  2362  − 0.34  − 69.4  3696  

S. Rath et al.                                                                                                                                                                                                                                     



Agricultural Water Management 246 (2021) 106634

10

nitrate leaching to ground water than SMS and rainfed practices during 
the 2015 corn growing season (Fig. 7). However, the highest nitrate 
leaching occurred during the 2015–16 fallow period after the 2015 
rainfed-high corn. Across all treatments the corn and peanut biomass left 
in the field after harvest (40% and 45%, respectively) caused nitrate-N 
leaching ranging from 15 to 70 kg N/ha and from 10 to 20 kg N /ha 
during the 2015–16 and 2016–17 fallow periods, respectively. 
Compared to 2015, corn grown in 2017 exhibited more leaching due to 
extreme weather conditions and the extra 17 kg/ha of N fertilizer that 
was added to compensate the loss of N due to leaching rain. Results show 
a ~40% (70 kg N/ha) reduction in nitrate leaching for the SMS-medium 
fertilizer treatment compared to the calendar irrigation and high N 
fertilizer practices that are common in the region. 

3.3. Long term simulation results 

3.3.1. Crop yield 
The long-term simulations (1980–2018) showed no significant dif

ference in average crop yields for the high and medium N fertilizer 
treatments when using Calendar or SMS irrigation scheduling methods. 
The rainfed and low fertility treatments showed statistically lower 
average yields (Fig. 8). These results are consistent with the field 
experiment results reported by Zamora et al. (2018). The incorporation 
of rye as a cover crop did not show any statistical significant effect on 
average corn yield for the high and medium N treatments. However, the 
Calendar and SMS low fertility corn treatments showed an average of 
12% and 9% increase in corn yield following cover crops, respectively. 
For these low fertilizer treatments, the incorporation and mineralization 
of cover crop biomass provided additional nutrients beneficial for corn 
production (Krueger et al., 2011). Similar field results were reported by 

Zotarelli et al. (2009) where at lowest supplemental N rates, cover crops 
added benefits to sweet corn yields in Florida, USA. No statistically 
significant effects of cover crops on average peanut yields were 
observed. The wide variation in predicted rainfed corn and peanut yields 
across all N fertility rates represents variations in water stress due to 
variations in annual rainfall. 

3.3.2. Nitrate-N leaching 
Fig. 9 shows long term leaching simulated over the crop rotation 

including fallow and cover crops between growing seasons (corn – 
fallow/cover crop – peanut – fallow/cover crop). As expected, high N 
fertilization rates resulted in more nitrate-N leaching than medium 
fertilization rates, which in turn resulted in greater leaching than low 
fertilization rates. Long-term simulations showed that SMS irrigation 
resulted in statistically significant less leaching than calendar irrigation 
across all fertilization rates. Furthermore, introducing cover crops dur
ing the fallow periods reduced nitrate-N leaching by a statistically sig
nificant average of approximately 50 kg N/ha across all treatments. The 
calendar-based irrigation with high fertilizer and no cover crop practice 
resulted in ~65% more leaching (~120 kg N/ ha) in comparison to the 
SMS-based irrigation with medium fertilizer and cover crop practice. 
Moreover, the extra 100 kg/ha fertilizer and 45% more irrigation water 
applied by this common practice did not provide any statistically dif
ference in average corn or peanut yields (Fig. 8). Long-term irrigation 
applied by the Calendar treatment averaged 506 and 309 mm during 
corn and peanut, respectively, whereas the SMS treatment (using auto- 
irrigation) applied an average of 290 and 160 mm, respectively. Thus, 
average irrigation reductions of 43% and 48% were achieved by using a 
sensor-based instead of calendar-based irrigation scheduling method in 
corn and peanut production, respectively. 

Fig. 4. Simulated (dots) vs observed (boxplots) aboveground biomass, yield and N uptake for corn 2015-peanut 2016-corn 2017 for System 1. Model performance 
statistics evaluated were NSEM, PBIAS (%) and RMSEM (kg/ha). 
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Further analysis of N leaching patterns showed that on average the 
calendar-based irrigation with high N fertilizer practice resulted in an 
average of ~100 kg N/ha leaching within the corn growing season fol
lowed by an average of ~50 kg N/ha during the subsequent fallow 
season. In contrast, the rainfed – high N fertilizer practice resulted in an 
average of ~34 kg N/ha leaching during the corn season and an average 
of ~100 kg N/ha leaching during the subsequent fallow period (Fig. S5). 
For the rainfed corn, the fertilizer not taken up by the crop during the 
growing season along with the N mineralization from corn residue 
resulted in more leaching during the fallow period than either the cal
endar or SMS irrigation practices. Nitrogen leaching from peanut res
idue (average of ~ 50 kg/ha across all management practices) was 
significantly reduced (~80%) by planting rye as a cover crop compared 
to leaving the fields fallow between cropping seasons (Fig. S5). 

4. Conclusions 

Providing quantitative support for the efficacy and economic feasi
bility of agricultural best management practices is becoming more and 
more critical as communities around the globe seek to balance agricul
tural production and environmental protection. Coupling robust field 
experiments of specific management practices with modeling ap
proaches that allow inference to be drawn at larger spatiotemporal 
scales is particularly useful for exploring tradeoffs among alternative 
future scenarios and comparing results to regulatory requirements and 
the preferences of diverse stakeholders. In this study, it is shown that 
SWAT successfully estimated soil moisture, crop biomass, yield, crop N 
uptake and soil nitrate for corn-peanut rotations grown using a variety of 
irrigation and N fertilizer management practices in the Suwannee River 
Basin, Florida. Leveraging robust field measurements from a 3-year field 

Fig. 5. Simulated (line) vs observed (dots) N uptake during crop growing seasons for SMS-high, medium and low in System 1.  

Table 7 
Modified goodness-of-fit indicators for total aboveground N uptake trend with measurement uncertainty. PBIAS is in %.  

System 1 Nitrogen Uptake trend 
Treatments Corn 2015 Peanut 2016 Corn 2017 

NSEM PBIAS RMSE M (kg/ha) NSEM PBIAS RMSE M (kg/ha) NSEM PBIAS RMSEM (kg/ha) 
SMS-High 0.99  − 5  7  0.99  8.3  8  0.56  − 42  58 
SMS-Medium 0.99  3.1  11  0.99  − 4.7  14  0.89  − 13.6  29 
SMS-Low 0.99  15.6  8  0.99  − 3.8  4  0.97  8.7  12 

System 2 Nitrogen Uptake trend 
Treatments Peanut 2015 Corn 2016 Peanut 2017 
SMS-High 0.97  17  25  0.74  − 36.3  53  0.77  − 41.4  43 
SMS-Medium 0.95  17.8  39  0.97  − 2.1  18  0.95  − 12.5  20 
SMS-Low 0.99  8.9  7  0.76  24.1  47  0.88  − 17.1  29  
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study (Zamora et al., 2018, 2020) allowed us to predict likely long-term 
changes in crop yields, water use, and N leaching over a range of his
torical conditions. By expanding experimental results beyond the tem
poral limits of specific field seasons, these model results provide more 
widely applicable guidance for reductions in nutrient loads that can be 
expected from BMP implementation. 

Specifically, we found that improving irrigation scheduling prac
tices, reducing N fertilization rates and planting a cover crop during 
fallow periods has the potential to reduce NO3-N leaching by ~65% over 
current commonly used corn-peanut rotation practices. Notably, this is 
within the 35–88% reduction in NO3-N load that is estimated to be 
needed to achieve the NNC in SRB spring ecosystems (FDEP, 2012, 
2018). Furthermore, our results indicate that these load reductions can 
be achieved without adversely affecting crop yield. This suggests that an 

incentive program that cost-shares equipment purchases and protects 
producers from the risk of yield reductions may be an effective way to 
overcome barriers to the widespread adoption of SMS irrigation sched
uling, reduced N fertilization rates and cover cropping practices in the 
region. Building from these results, we are currently engaging stake
holders to develop alternative land use-land management scenarios at 

Fig. 6. Observed (dots) vs simulated (lines) soil nitrate-N in root zone (0–900 mm) for SMS, Calendar and Rainfed-High treatments for System 1. Red and green bars 
denote daily rainfall and fertilizer applications. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 7. Simulated nitrate-N leaching during complete crop rotation for System 
1 (corn 2015-peanut 2016-corn 2017) including intercropping bare fallow pe
riods (2015–16 and 2016–17). In staggerd bar graph nitrate-N leaching corre
sponds to corn 2015 (bottom) to corn 2017 (top). 

Table 8 
Modified goodness-of-fit indicators for simulated soil nitrate-N for both systems.   

System 1 System 2  

NSEM PBIAS (%) RMSEM  

(mg/kg) 
NSEM PBIAS (%) RMSEM  

(mg/kg) 

SMS-High  0.81  − 6.1  4.8  0.58  − 6.4  9.46 
Calendar-High  0.70  − 16.7  4.2  0.80  − 11.7  4.40 
Rainfed-High  0.16  − 66.8  8.45  0.25  − 18.4  12.73 
SMS-Medium  0.64  9.8  2.83  0.93  14  2.24 
Calendar-Medium  0.74  20.6  3.33  0.90  17.9  3.30 
Rain fed-Medium  0.76  − 5.3  3.52  0.75  − 1.9  6.56 
SMS-Low  0.55  35.6  2.79  0.79  37.9  4.51 
Calendar-Low  0.61  43.4  4.05  0.86  36.2  2.67 
Rain fed-Low  0.65  43.1  3.22  0.84  26.1  4.08  
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Fig. 8. Long-term corn (A) and peanut (B) yield simulations with fallow (baseline) and with rye cover crop between cropping seasons across irrigation treatments 
(Calendar, SMS and Rain fed) and N fertility rates (low, medium and high). Different letters indicate significant difference at α = 0.05 level. Boxplots for each 
irrigation treatment corrspond to baseline (left) and covercrop (right). 
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the watershed scale. These scenarios will be used to drive a 
SWAT-MODLOW model to evaluate tradeoffs among the regional agri
cultural economy, surface water and groundwater quantity, and 
stream/aquifer water quality, and to determine whether improved 
management practices alone can achieve the NNC. Overall, the results of 
this study and our ongoing efforts provide a transferable framework for 
developing effective and economically feasible strategies for meeting 
water quality regulations while maintaining agricultural landscapes and 
livelihoods. 
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Malagò, A., Pagliero, L., Bouraoui, F., Franchini, M., 2015. Comparing calibrated 
parameter sets of the SWAT model for the Scandinavian and Iberian peninsulas. 
Hydrol. Sci. J. https://doi.org/10.1080/02626667.2014.978332. 

Mapfumo, E., Chanasyk, D.S., Willms, W.D., 2004. Simulating daily soil water under 
foothills fescue grazing with the soil and water assessment tool model (Alberta, 
Canada). Hydrol. Process. 18, 2787–2800. 

Marek, G.W., Gowda, P.H., Evett, S.R., Baumhardt, R.L., Brauer, D.K., Howell, T.A., 
Srinivasan, R., 2016. Calibration and validation of the SWAT model for predicting 
daily ET over irrigated crops in the Texas High Plains using lysimetric data. Trans. 
ASABE 59 (2), 611–622. 

Marek, G.W., Gowda, P.H., Marek, T.H., Porter, D.O., Baumhardt, R.L., Brauner, D.K., 
2017. Modelling long-term water use of irrigated cropping rotations in the Texas 
High Plains using SWAT. Irrig. Sci. 35 (2), 111–123. 

Martinez-Feria, R.A., Dietzel, R., Liebman, M., Helmers J., M., Archontoulis V., S., 2016. 
Rye cover crop effects on maize: a system-level analysis. Field Crops Res. 196, 
145–159. 

Maski, D., Mankin, K.R., Janssen, K.A., Tuppad, P., Pierzynski, G.M., 2008. Modeling 
runoff and sediment yields from combined in-field crop practices using the Soil and 
Water Assessment Tool. J. Soil Water Conserv. 63 (4), 193–203. 

Meals, D.W., Dressing, S.A., Davenport, T.E., 2010. Lag time in water quality response to 
best management practices: a review. J. Environ. Qual. 39 (1), 85–96. 

Mitteslet R., A., Storm E., D., Stoecker, A.L., 2015. Using SWAT to simulate crop yields 
and salinity levels in the North Fork River Basin, USA. Int. J. Agric. Biol. Eng. 8 (3), 
110–124. 

Mitsch, W.J., Day Jr., J.W., Gilliam, J.W., Groffman, P.M., Hey, D.L., Randall, G.W., 
Wang, N., 1999. Reducing nutrient loads, especially nitrate-nitrogen, to surface 
water, groundwater, and the Gulf of Mexico, Topic 5 Report for the integrated 
assessment on hypoxia in the Gulf of Mexico, NOAA Coastal Ocean Program Decision 
Analysis Series No.19, NOAA Coastal Ocean Program, Silver Spring, MD. 

Moore, E.B., Wiedenhoeft, M.H., Kaspar, T.C., Cambardella, C.A., 2014. Rye cover crop 
effects on soil quality in no-till corn silage–soybean cropping systems. Soil Sci. Soc. 
Am. J. 78, 968–976. 

Moloney, C., Cibin, R., Chaubey, I., 2015. Using a Single HRU SWAT Model to Examine 
and Improve Representation of Field-Scale Processes. 

Moriasi, D.N., Arnold, G.J., Van Liew, W.M., Bingner, L.R., Harmel, D.R., Veith, L.T., 
2007. Model evaluation guidelines for systematic quantification of accuracy in 
watershed simulations. Trans. ASABE 50 (3), 885–900. 

Moriasi, D.N., Gitau, M.W., Pai, N., Daggupati, P., 2012. Hydrologic and water quality 
models: performance measures and evaluation criteria. Trans. ASABE 58 (6), 
1763–1785. 

S. Rath et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref16
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref16
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref16
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref17
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref17
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref17
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref18
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref18
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref18
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref18
https://doi.org/10.2134/jeq2011.0393
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref20
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref20
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref20
https://doi.org/10.3390/w9070509
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref22
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref22
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref23
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref23
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref23
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref23
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref24
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref24
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref24
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref25
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref25
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref25
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref25
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref26
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref26
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref26
https://www.epa.gov/ground-water-and-drinking-water/table-regulated-drinking-water-contaminants%23Inorganic
https://www.epa.gov/ground-water-and-drinking-water/table-regulated-drinking-water-contaminants%23Inorganic
https://www.epa.gov/ground-water-and-drinking-water/table-regulated-drinking-water-contaminants%23Inorganic
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref27
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref27
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref28
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref28
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref29
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref29
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref29
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref30
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref30
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref30
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref30
https://doi.org/10.1016/j.jhydrol.2016.01.034
https://doi.org/10.1016/j.jhydrol.2016.01.034
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref32
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref32
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref32
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref33
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref33
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref34
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref34
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref34
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref35
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref35
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref35
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref36
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref36
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref36
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref37
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref37
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref37
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref38
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref38
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref38
https://doi.org/10.3390/w9090709
https://doi.org/10.3390/w9090709
http://digitalcommons.unl.edu/usdaarsfacpub/1382
http://digitalcommons.unl.edu/usdaarsfacpub/1382
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref40
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref40
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref41
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref41
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref41
https://doi.org/10.1201/9781420032413.ch10
https://doi.org/10.1201/9781420032413.ch10
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref43
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref43
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref43
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref44
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref44
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref44
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref45
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref45
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref45
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref46
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref46
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref46
https://doi.org/10.1080/02626667.2014.978332
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref48
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref48
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref48
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref49
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref49
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref49
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref49
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref50
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref50
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref50
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref51
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref51
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref51
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref52
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref52
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref52
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref53
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref53
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref54
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref54
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref54
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref55
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref55
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref55
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref56
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref56
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref56
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref57
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref57
http://refhub.elsevier.com/S0378-3774(20)32181-8/sbref57


Agricultural Water Management 246 (2021) 106634

16

Motavalli, P.P., Goyne, K.W., Udawatta, R.P., 2008. Environmental impacts of enhanced- 
efficiency nitrogen fertilizers. Crop Manag. 7 (1), 1–15. 

Mulla, D.J., Kitchen, N., David, M., 2004. Evaluating the effectiveness of agricultural 
management practices at reducing nutrient losses to surface waters. 

Mylavarapu, R., Wright, D., Kidder, G., 2015. UF-IFAS Standardized Fertilization 
Recommendations for Agronomic Crops. Soil and Water Science Department, UF- 
IFAS Extension, (SL129), 10/1/2015-8. 

Nair, S.S., King, K.W., Witter, J.D., Sohngen, B.L., Fausey, N.R., 2011. Importance of crop 
yield in calibrating watershed water quality simulation models. J. Am. Water Res. 
Assoc. 47 (6), 1285–1297. 

Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Srinivasan, R., Williams, J.R., 2004. Soil and 
Water Assessment Tool Input/Output File Documentation version 2005. Grassland, 
Soil and Water Research Laboratory, USDA-ARS andBlackland Research and 
Extension Center, Texas A&M University, Temple, Texas.  

Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R. 2011. Soil and Water Assessment 
Tool theoretical documentation: Version 2009. USDA– ARS, Grassland, Soil and 
Water Research Laboratory, Temple, TX; and Blackland Research and Extension 
Center, Texas AgriLife Research, Temple, TX. Texas Water Resources Institute 
Technical Rep. 406, Texas A&M University System, College Station, TX. 〈http:// 
swatmodel.tamu〉. Edu/documentation/. (Accessed 8 December 2012). 

Nolan, B.T., 2001. Relating nitrogen sources and aquifer susceptibility to nitrate in 
shallow ground waters of the United States. Groundwater 39 (2), 290–299. 

Nolan, B.T., Ruddy, B.C., 1996. Nitrate in Ground Waters of the United States-Assessing 
the Risk; U.S. Geological Survey: Reston, VA, 1996; Fact Sheet FS-092-96. 

Panno, S.V., Hackley, K.C., Hwang, H.H., Kelly, W.R., 2001. Determination of the sources 
of nitrate contamination in karst springs using isotopic and chemical indicators. 
Chem. Geol. 179 (1–4), 113–128. 

Peterson, E.W., Davis, R.K., Brahana, J.V., Orndorff, H.A., 2002. Movement of nitrate 
through regolith covered karst terrane, northwest Arkansas. J. Hydrol. 256 (1–2), 
35–47. 

Poikane, S., Kelly, M.G., Herrero, F.S., Pitt, J.A., Jarvie, H.P., Claussen, U., Leujak, W., 
Solheim, A.L., Teixeira, H., Phillips, G., 2019. Nutrient criteria for surface waters 
under the European Water Framework Directive: current state-of-the-art, challenges 
and future outlook. Sci. Total Environ. 695, 133888. 

Prasad, R., Hochmuth, G.J., Boote, K.J., 2015. Estimation of nitrogen pools in irrigated 
potato production on sandy soil using the Model SUBSTOR. PLoS One 10 (1), 
e0117891. https://doi.org/10.1371/journal.pone.0117891. 

Prasad, R., Hochmuth, G.J., 2016. Environmental nitrogen losses from commercial crop 
production systems in the Suwannee River Basin of Florida. PLoS One 11 (12), 
e0167558. https://doi.org/10.1371/journal.pone.0167558. 

Rajib, M.A., Merwade, V., Yu, Z., 2016. Multi-objective calibration of a hydrologic model 
using spatially 680 distributed remotely sensed/in-situ soil moisture. J. Hydrol. 536, 
192–207. 

Ramos, C., Carbonell, E.A., 1991. Nitrate leaching and soil moisture prediction with the 
LEACHM model. Fertil. Res. 27, 171–180. 
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