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ABSTRACT: Harmful algal blooms are a growing human and
environmental health hazard globally. Eco-physiological diversity
of the cyanobacteria genera that make up these blooms creates
challenges for water managers tasked with controlling the
intensity and frequency of blooms, particularly of harmful taxa

Random Forests modeling of
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(e.g, toxin producers, N, fixers). Compounding these challenges
is the ongoing debate over the efficacy of nutrient management
strategies (phosphorus-only versus nitrogen and phosphorus),
which increases decision-making uncertainty. To improve our
understanding of how different cyanobacteria respond to
nutrient levels and other biophysical factors, we analyzed a S > ’ >
unique 17 year data set comprising monthly observations of & o
cyanobacteria genera and zooplankton abundances, water

quality, and flow in a bloom-impacted, subtropical, flow-through lake in Florida (United States). Using the Random Forests
machine learning algorithm, an ensemble modeling approach, we characterized and quantified relationships among
environmental conditions and five dominant cyanobacteria genera. Results highlighted nonlinear relationships and critical
thresholds between cyanobacteria genera and environmental covariates, the potential for hydrology and temperature to limit the
efficacy of cyanobacteria bloom management actions, and the importance of a dual nutrient management strategy for reducing
bloom risk in the long term.
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B INTRODUCTION

Increases in the frequency, magnitude, duration, and geographic
range of harmful cyanobacterial blooms related to cultural
eutrophication and climate change' ™ have raised concerns
about undesirable future changes in the structure and function
of freshwater ecosystems.*”® Of particular concern are
cyanobacteria species that threaten ecological and public health
through the production of toxins, formation of scums that
shade out benthic primary producers, and excess accumulation
of biomass that can result in hypoxia.”

Although cyanobacteria are found in most aquatic environ-
ments, their blooms are particularly widespread and intense in
eutrophic freshwater systems.” The ubiquity of cyanobacteria is
attributable to a diversity of physiological adaptations that allow

growth at elevated temperatures,7 and grazer avoidance,
among others.

Considering the eco-physiological diversity exhibited by
cyanobacteria taxa offers insight into how cyanobacteria
outcompete other phytoplankton, but it does not necessarily
help clarify the factors that drive the dynamics of cyanobacteria
populations and formation of bloom events in individual
ecosystems.'”'® This issue is central to challenges faced by
water managers who are tasked with developing appropriate
actions for not only controlling the intensity and frequency of
blooms but also reducing the potential for blooms of harmful
taxa (e.g, toxin producers). These challenges are further
compounded by an ongoing debate regarding the efficacy of P-
only (“single nutrient”) versus N-and-P (“dual nutrient”)

them to successfully compete for limited resources in a wide Received: November 17, 2017
range of habitat types.””'? Such adaptations include N, Revised:  February §, 2018
fixation,"”'* luxury nitrogen (N) and phosphorus (P) Accepted: February 23, 2018
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management strate%ige_s2 for cyanobacteria bloom abatement in
aquatic ecosystems. i

The primary goal of this study was to address the growing
need for increased understanding of the environmental
conditions that control blooms of important cyanobacteria
genera and to inform water managers’ adoption of nutrient
management strategies for bloom mitigation. Our specific
objectives were to (1) quantify and characterize taxa-specific
relationships between cyanobacteria biomass and environ-
mental conditions and (2) evaluate the efficacy of nutrient
management strategies relative to several important cyanobac-
teria taxa. To do so, we applied the Random Forests method,
an ensemble-modeling machine learning approach, to a long-
term (17 year) data set composed of monthly observations of
physical and chemical parameters, flow, and biomass of
cyanobacteria and zooplankton taxa in Lake George, a
subtropical flow-through lake of the iconic St. Johns River
(Florida). To our knowledge, this is the first investigation to
concurrently characterize relationships between bloom-forming
cyanobacteria genera and biological, chemical, and physical
covariates, as well as to apply the Random Forests methodology
to the assessment of cyanobacteria dynamics. Results offer new
insights into how diverse cyanobacterial assemblages respond
to top-down and bottom-up controls over a long-term record,
offering insights that are broadly applicable to other freshwater
systems.

B METHODS

Site Description. The St. Johns River is a subtropical
blackwater system that drains 24424 km® of Florida’s
northeastern region (United States).”* The St. Johns flows
from south to north through approximately 500 km of
meandering river reaches and flow-through lakes before
discharging into the Atlantic Ocean (Figure S1). The largest
of these flow-through lakes is Lake George (18934 ha), a
shallow system (mean depth of 3 m) located approximately 210
km upstream from the mouth of the river.”> Hydrologic inputs
to Lake George include the St. Johns River (78.9% of the lake’s
volume), rainfall (8.7%), flow from artesian springs (8.3%), and
runoff (4.1%).>® Turnover times in the lake are estimated to
range from 24 to 180 days depending on flow conditions.*®
Lake George’s waters are amber in color because of the
presence of high levels of colored dissolved organic matter,
concentrations of which peak from fall to early spring.**

Lake George is eutrophic (TP concentrations range from
approximately 30 to 160 ugL™") and is affected by recurrent
and severe cyanobacteria blooms.”*”” In terms of carbon
biomass, cyanobacteria account for over 90% of the total
phytoplankton observed in this system. Cyanobacteria in Lake
George display distinct seasonal patterns that diverge from
traditional spring—summer—fall-winter variation. Instead,
cyanobacteria periodicity in this subtropical, flow-through
setting is better explained by “cold” (January—April), “warm”
(May—August), and “flushing” (September—December) sea-
*® On average, cyanobacteria carbon biomass in Lake
Georgezi75 greatest in the warm season, followed by the flushing
season.

Data Set. Data evaluated in this study included monthly
water quality observations, phytoplankton and zooplankton
species counts, and flow rates from October 1993 to December
2010. Data were collected at a long-term monitoring site
(LGL1.2, see Figure Sla) located at the outlet of Lake George.
Phytoplankton and zooplankton species identifications and

sons.
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enumerations were done using inverted light microscopes
according to methods described by Srifa et al.”” Water quality
parameters associated with the collection of water for plankton
counts were obtained from the St. Johns River Water
Management District. Regularly measured constituents in-
cluded alkalinity, chlorophyll, chloride, color, conductivity,
dissolved oxygen, pH, pheophytin, Secchi depth, sulfate, total
dissolved and suspended solids, total organic carbon, turbidity,
water temperature, dissolved ammonium, dissolved phosphate,
total phosphorus (TP), and total Kjeldahl nitrogen (TKN).
Light extinction due to tripton (Ktriptonl m™') was predicted
from the chlorophyll-a, color, and Secchi depth data (eq S1).

Zooplankton and cyanobacteria biovolumes were trans-
formed into carbon biomass (mg C L") using carbon
conversion factors of 0.07S and 0.22 pg C um~?,
respectively.””*’ Daily flow data were collected in the St.
Johns River by the U.S. Geological Survey (USGS) at site
02236000 in Deland, FL (“flow monitoring” site in Figure Sla).
The USGS maintains a flow monitoring site nearer the inlet to
Lake George (site 02236125 in Astor, FL), but these data
included several gaps over the study period. Flow data collected
at the Deland and Astor sites were compared to ensure that the
Deland data were representative of Lake George’s inflow
dynamics (Figure S2); the data were related by a Pearson’s
correlation coeflicient of 0.96 and a Nash—Sutcliffe efliciency
(eq S1) of 0.915, leading us to conclude that the use of Deland
data was acceptable for this analysis. Data-processing details are
provided in the Supporting Information.

Random Forests Modeling. We utilized Random Forests
models to quantify and characterize taxa-specific cyanobac-
teria—environment relationships. Random Forests is a machine
learning algorithm used to fit a large ensemble (or “forest”) of
randomly assembled decorrelated classification (discrete data)
or regression (continuous data) trees to bootstrapped samples
of a response variable, and the outputs of these trees are
averaged to produce a simulated response.’’ ™’ The Random
Forests modeling framework was selected for this analysis
because of its abilities to (1) handle data produced from
complex interactions®” and (2) uncover nonlinear and linear
relationship structures,””** making this approach ideal for
uncovering the functions relating cyanobacteria genera to
environmental and trophic covariates.

While Random Forests models are often viewed as “black
boxes,” methods exist for quantifying how these statistically
derived models relate input explanatory variables to produce
simulated responses. Such measures include permutation
importance, partial dependence, and relative sensitivity.
Permutation importance describes the change in mean squared
error (MSE) that occurs when a fitted model is run with a
randomly permuted explanatory variable.”*** Partial depend-
ence is a measure of an explanatory variable’s influence on the
response variable given the effects of all other explanatory
variables in the model’** and is calculated across the range of
each explanatory variable’s observations. Relative sensitivity is
calculated from the partial dependence curves to summarize the
ranges over which partial dependencies varied relative to
changes in the explanatory variables; if partial dependence
greatly varies over a narrow range of an explanatory variable
(i.e., the partial dependence curve has a steep slope), then the
response variable is said to have a high relative sensitivity to
that explanatory variable.

Models were fit and tested through S-fold cross validation,*
which was performed using the following steps: (1) partition
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Figure 1. Nash—Sutcliffe Efficiencies (NSE) of the genera models when tested against (a) training and (b) testing data subsets. Each boxplot
contains #n = 25 values corresponding to the S-repeated S-fold cross-validation performed for each Random Forests model; each value is shown as a

green point.

data set into training and testing folds; (2) “grow” Random
Forests; (3) quantify model performance using the Nash—
Sutcliffe efficiency; (4) tabulate permutation importance, partial
dependence, and relative sensitivity of all the explanatory
variables; and (5) repeat steps 2—4 four times, with each new
fold representing the “testing” set on each iteration. This
modeling framework was repeated five times for each response
variable to evaluate variability in model outputs; thus a total of
25 random forest models were produced with each application
(S repetitions of each S-fold cross validation). Details associated
with each of these steps are provided in the Supporting
Information.

Response and Explanatory Variables. The dominant
cyanobacteria genera, defined here as genera that accounted for
5% or greater of the total cyanobacteria carbon biomass (mg C
L") over the study period, were designated as the response
variables in the Random Forests modeling analysis.

TKN (mg L"), TP (mg L"), dissolved NH, (mg L"),
dissolved PO, (mg L™"), water temperature (°C), average flow
(m® s7"), partial light extinction due to tripton (I<tripton) m™),
color (CPU), copepods (mg C L"), and rotifers (mg C L™")
were included as explanatory variables in the Random Forests
models. K., was calculated from Secchi depth, chlorophyll-g,
and color (I;ee the Supporting Information). This reduced set
of factors was selected based on reported relationships between
these covariates and cyanobacteria.””>*”**™** Excluded varia-
bles are outlined in the Supporting Information, along with
justification for their exclusion. All explanatory variables were
lagged by one time step (1 month) to reflect the division rates
of cyanobacteria in natural environments.'**’

B RESULTS

Summary of Observations. The Anabaena (N, fixers),
Cylindrospermopsis (N, fixers), Planktolyngbya (nonfixers),
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Microcystis (nonfixers), and Oscillatoria (nonfixers) groups
dominated the Lake George cyanobacteria community over the
study period (Table S1). It is important to note that the
Oscillatoria group includes several genera (e.g., Planktothrix and
Limnothrix) that were further divided from Oscillatoria and
renamed during the data collection period;*’ similarly, the
Anabaena group includes members of the genus recently
renamed to Dolichospernum.*' Given that these changes
occurred well into the study period, we have reported these
groups per the prior nomenclature because observations were
recorded in the context of these broader classifications.
Cyanobacteria biomass displayed strong interannual (Figure
S3) and seasonal variability (Figure S4) across the dominant
genera. Of the dominant genera, Oscillatoria produced the
greatest total biomass over the study period and Anabaena the
least (Table S1). Interestingly, Microcystis regularly bloomed
prior to 2001 and minimally varied at low biovolumes thereafter
(Figure S3). Cyanobacteria predominantly flourished in the
warm season, followed by the flushing season (Figure S4);
Anabaena typically bloomed prior to the other genera on a
seasonal basis (Figure S4). Additional description of the
observed data is included in the Supporting Information.
Model Performance. Models fit the training data well, as
measured by Nash Sutcliffe efficiency (NSE) across the 25
model applications per response variable (Figure 1la); the
minimum NSE value was 0.77 (an Anabaena model) and the
max was 0.91 (a Planktolyngbya model). Previous studies have
proposed that models with NSE > 0.65 are “acceptable”,"”
indicating that all the training Random Forests models
presented here satisfactorily simulated cyanobacteria genera
dynamics. However, models did not perform as well when
predicting the testing data (Figure 1b). Specifically, the model
suites included efficiencies below 0 when evaluated against the
testing data, which suggests that findings reported here were
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Figure 2. Permuted importance of explanatory variables. x-axes are in units of % change in mean squared error. Each boxplot includes n = 25 values
corresponding to the S-repeated S-fold cross-validation performed for each model.

not generalizable across the entire study period; rather, marked
effects of particular relationships were important for subsets of
the period of record.

Permutation Importance. Color and water temperature
were associated with the greatest permutation importance
(quantified through percent change in MSE) in the
Cylindrospermopsis (Figure 2b), Planktolyngbya (Figure 2c),
and Oscillatoria (Figure 2e) models; these explanatory variables
were also among the most important in the Anabaena (Figure
2a) and Microcystis (Figure 2d) models. Overall, permutation of
explanatory variables did not dramatically change the percent
MSE in any of the models. However, water temperature
appeared to be a particularly influential variable in the
Planktolyngbya model (Figure 2c). As the Planktolyngbya
model suite had the highest testing NSE results, the variable
importance results suggest that permuted importance also
served as a predictor of model testing success.

Partial Dependence. Plots of partial dependence revealed
predominantly nonlinear model relationships between the
lagged explanatory variables and cyanobacteria genera (Figure
3). Partial dependence curves correspond to the relationships
linking response and explanatory variables, and the curves are
composed of the average modeled values (in units of the
response variable) across the range of explanatory variable
observations. The steepest curves were associated with TKN,
TP, average flow, color, water temperature, and copepod
abundance, whereas the curves for NH,, PO, Kiipon and
rotifer abundance curves were largely invariant.
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Nonfixing cyanobacteria genera (Planktolyngbya, Microcystis,
and Oscillatoria) displayed a relatively strong partial depend-
ence on TKN (Figure 3a). Specifically, these curves depict a
threshold in the relationship between TKN and nonfixers
where partial dependence rose sharply with TKN concen-
trations between 1.5 and 2.5 mg L™" but plateaued in the range
of 25-3 mg L™'. Note, however, that there were few
observations at high TKN concentrations, limiting interpreta-
tion in this range. Anabaena and Cylindrospermopsis showed
little partial dependence on TKN; however, these partial
dependence curves revealed a slight sensitivity of N, fixers to
TKN at low TKN concentrations.

The cyanobacteria genera largely lacked partial dependence
on TP, with Microcystis being an exception (Figure 3b).
Microcystis’ partial dependence on TP indicated a sensitivity to
TP at low concentrations (decreasing carbon biomass with
increasing TP) up until a concentration of approximately 0.1
mg L', above which there was no additional dependence (i.e.,
similar to the “threshold” response described above).

Average flow (Figure 3e), color (Figure 3f), and water
temperature (Figure 3h) emerged as explanatory variables on
which all of the cyanobacteria genera displayed notable partial
dependence. Specifically, cyanobacteria were more abundant at
low flows and colors and higher temperatures. However, the
color partial dependence curves were essentially identical across
all cyanobacteria genera except Anabaena (Figure 3f), which
peaked at approximately 120 CPU.
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Figure 3. Scaled partial dependence plots of the cyanobacteria genera. Solid lines equal the median partial dependences of the n = 25 models per
genus, and corresponding shaded areas are bound by the min and max partial dependences. y-axes correspond to carbon biomass, but the curves have
been min—max normalized by genus to enable comparisons among the genera, making the y-axes unitless. Partial dependence plots for each genus
(nonscaled) are included in the Supporting Information. The point clouds included at the top of each panel reflect the densities of the explanatory
covariates’ observed values. Units of the x-axes are shown in the sub-plot titles.

Relative Sensitivity. Relative sensitivities were calculated
based on the median scaled partial dependence curves (Figure
4). The cyanobacteria genera were, on average, most sensitive
to the physical covariates, followed by nutrient concentrations,
then zooplankton abundance (average relative sensitivities to
physical factors, nutrients, and zooplankton across all genera
equaled 1.29, 045, and 0.41, respectively). Planktolyngbya
(Figure 4c) and Oscillatoria (Figure 4e) were most sensitive to
changes in water temperature; Anabaena (Figure 4a) and
Microcystis (Figure 4d) were most sensitive to changes in
average flow; Cylindrospermopsis (Figure 4b) was most sensitive
to water color. With regards to nutrients, the genera were
generally more sensitive to TKN than TP, though Microcystis
was similarly sensitive to TKN and TP (Figure 4d).

B DISCUSSION

Historically, a number of researchers have argued that nutrient
management is the most effective strategy for preventing
cyanobacteria blooms regardless of the dominant taxa
involved.'”**** While the results of this study provide some
support for the potential efficacy of nutrient reduction
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strategies, certain aspects of the results highlight how nutrients
alone do not always adequately explain trends in biomass of
certain cyanobacteria taxa of particular concern from a
management perspective (e.g, harmful algal bloom species).
The importance of the latter caveat is illustrated by the relative
sensitivity of different cyanobacteria genera to the range of
explanatory variables included in this modeling effort. Overall,
the genera were relatively more sensitive to TKN, TP, average
flow, color, and copepod abundance. Because the genera were
found to be largely insensitive to changes in NH,, PO,, light
extinction due to tripton, and rotifer abundance, these
covariates were excluded from the ensuing discussion.
Sensitivity of Cyanobacterial Biomass to Nitrogen
and Phosphorus Levels. N, fixing cyanobacteria were
relatively insensitive to TKN (Figure 2a) because of their
ability to utilize N, as a nitrogen source for growth."” In
contrast, nonfixing genera showed increasing partial depend-
ence on TKN with increasing concentrations until a threshold
of 1.5—2.5 mg L™ (Figures 3a and 2a). This finding indicates
that management actions seeking to reduce TKN may produce
observable decreases in nonfixer cyanobacteria biomass when
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Figure 4. Relative sensitivities of the genera to the explanatory
variables. y-axes correspond to relative sensitivity values (unitless).

this concentration threshold is crossed. The sharpest thresh-
olding behavior was associated with Microcystis, which reflects
the observation that after 2001 no major Microcystis blooms
were observed in Lake George (Figure S3). The post-2001
period was also characterized by lower baseline and peak levels
of TKN. It is possible that the relatively strong reliance of
Microcystis on external nitrogen made it less competitive during
the post-2001 period, as observed in some other ecosys-
tems. ™~

Most cyanobacteria genera were less sensitive to changes in
TP concentrations than to TKN, as demonstrated by the flatter
TP partial dependence curves (Figure 3b). The somewhat
elevated dependence of Microcystis biomass on the lower end of
the TP concentration scale may reflect how elevated biomass
levels generally appeared in mid-late summer when TP levels in
the water column were often lower than in spring or early
summer (Figure SS). Microcystis aeruginosa is well-known to
have strong buoyancy regulation capacity.'**® It is possible that
during midsummer, when average wind mixing energy is lower
than in the spring, M. aeruginosa takes advantage of benthic
fluxes of bioavailable phosphorus, which are enhanced by lower
oxygen levels near the bottom of the water column,*”’
particularly under high summer water temperatures. The ability
of buoyancy-regulating cyanobacteria to take advantage of
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elevated nutrient levels in different layers of the water column
has been observed in other ecosystems.’’ In more general
terms, many of the major bloom-forming cyanobacteria species
in Lake George are known to have differing degrees of
buoyancy regulation,”” which may contribute to the apparent
low sensitivity to TP levels, because sediment phosphorus
reserves can serve as sources of nutrients somewhat
independent of water column concentrations.”'

Implications for Nutrient-Based Cyanobacteria Bloom
Mitigation. The cyanobacteria—nutrient relationships identi-
fied here provide some insight into the ongoing discussions in
the literature of two nutrient management approaches:
phosphorus-only'”*® versus dual control of both nitrogen and
phosphorus.”' > Although our results are from a single,
shallow, subtropical lake, they highlight nuances that are
broadly applicable when weighing the potential efficacy of these
two approaches. The insensitivity of the cyanobacteria groups’
biomass to the range of TP values observed in Lake George
raises questions about whether phosphorus reduction alone will
significantly reduce intensities of certain types of cyanobacteria
blooms. While the results of recent nutrient enrichment
bioassay experiments in Lake George identified phosphorus-
and phosphorus/nitrogen colimited conditions for phytoplank-
ton growth, these conclusions were produced from data
collected during an extreme drought in 2000, when TP
concentrations were very low (e.g, near 30 pug L)%
Additionally, the modest sensitivity of N, fixing species biomass
to TP values below 0.06 ug L™' observed in the Random
Forests results provides some limited evidence for the potential
control of this functional group, possibly related to the
relatively hi3gh demand some nitrogen fixers have for
phosphorus.”** Recent mechanistic modeling efforts by the
St. Johns River Water Management District identified an annual
mean threshold of 0.05—0.063 mg TP L' as a long-term target
that would be effective for mitigating blooms.** The differences
between the findings of these prior studies and those presented
here are challenging to reconcile but could be explained by the
aforementioned influences of internal loads from sediments and
water column cycling of nutrients, as observed in some
ecosystems.”' The range of results among this and other studies
on cyanobacteria—phosphorus relationships in Lake George
warrant further examination, focusing on the feasibility of
reducing phosphorus levels within the context of both internal
and external phosphorus sources.

In contrast, the sensitivity of non-N, fixing cyanobacteria to
TKN (Figure 3a) suggests that significant reductions in
nitrogen load do have the potential to reduce bloom intensities
of those genera, though N,-fixing cyanobacteria are unlikely to
be affected. Combined with those of TP, these TKN results
suggest that the potential exists for control of N, fixers through
phosphorus reductions, and nonfixers through nitrogen
reductions. However, other studies have shown that N, fixation
in many lakes may represent less than 50% of the N, fixer
nitrogen demand;>> ™" therefore, these modeling results should
be interpreted in the context of other experimental findings.

The value of considering nitrogen load reduction in part
depends on the specific management priorities for Lake
George. For example, toxic blooms of the non-N, fixing
cyanobacterium Microcystis aeruginosa are a recurring problem
for Lake George and the downstream portions of the lower St.
Johns River.® The negative response of Microcystis and other
non-N, fixing cyanobacterial biomass to TKN concentrations
below 1.5 mg L' (Figure 3a) suggests that significant
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reductions in external nitrogen loads may contribute to less
intense blooms of these groups. However, this conclusion may
be in part dependent on the response of the N, fixing
cyanobacteria to reduced nitrogen loads. Currently, the N,
fixers Anabaena (most prominently the renamed genus
Dolichospermum) and Cylindrospermopsis are major contributors
to the nitrogen budget of Lake George.”

The latter observation raises two important considerations
related to possible consequences of nitrogen reduction
strategies: (1) The relative importance of Anabaena and
Cylindrospermopsis biomass may increase relative to nonfixers
and result in alternative challenges to the ecosystem. (2)
Increases in N, fixer biomass may lead to increases in nitrogen
loads via N, fixation to the system, which could ultimately fuel
nonfixer blooms, particularly downstream of the lake. These
considerations, and those associated with phosphorus reduction
scenarios, argue for exploration of a dual phosphorus and
nitrogen management strategy. The potential feasibility or
efficacy of such an approach in other lakes more generally
depends on the specific structure of individual ecosystems and
the character of their external and internal sources of nutrient
load.

Sensitivity of Cyanobacterial Biomass to Other
Abiotic and Biotic Variables. Beyond nutrient-based
management strategies, our study also identified important
connections among cyanobacteria and other abiotic and biotic
factors, which help to put the nutrient response observations
into a more holistic management context. One of the challenges
facing water managers is that many of these factors (e.g,, water
temperature, flow, color) are largely uncontrollable in the short
term, even though human activities will likely have strong
impacts on them in future decades and centuries, such as
changes in temperature, rainfall (e.g, as it relates to watershed
inputs), and hydrologic conditions (e.g, sea level rise, lake
stage). For example, the strong positive relationship between
cyanobacteria biomass and temperature also corroborates the
hypotheses of a number of researchers that anticipated future
global temperature increases will selectively favor cyanobac-
teria. "%

It is also important to examine potential interactive effects
among abiotic explanatory variables to further define the extent
to which nutrients influence cyanobacteria dynamics, partic-
ularly when certain nutrients are not present in limiting
concentrations,'”®' =% as appears to be the case for phosphorus
in Lake George. High flow conditions in the fall and winter not
only lead to reduced water residence times and reduced light
transmission due to elevated color levels but also occur during
the period of lowest incident light flux and water temperatures,
all of which help to explain the low potential for blooms of
phytoplankton in general, despite the fact that it is also the
period of highest nutrient concentrations.””*”*° The impor-
tance of these relationships is reflected in the strong negative
correlations between cyanobacterial biomass and both flow and
color.

Previous studies of Lake George have highlighted how
hydrologic conditions can override or exaggerate the effects of
other environmental factors, such as nutrient levels, on
cyanobacteria dynamics,”” corroborating the results presented
here. Understanding the degree to which the hydrologic regime
decouples cyanobacteria from nutrient dynamics is critical to
understanding the potential efficacy of water quality manage-
ment practices. We caution, however, that there are substantial
physical and/or fiscal barriers associated with changing a
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system’s hydrology. Unless managers have the capacity to store
and release large amounts of freshwater, their ability to control
bloom potentials is likely limited to nutrient management.
Therefore, it is ultimately the “nutrient knob”** that provides
the most reliable management strategy for long-term bloom
mitigation.%’%64

Another consideration for defining the dynamics of
cyanobacteria populations is the role of top-down controls,
both in terms of direct grazing pressure and indirect trophic
cascade effects. The data available for the two dominant groups
of zooplankton in Lake George, rotifers and copepods, provide
some insight into top-down effects. Non-N, fixing cyanobac-
teria had a positive near linear relationship with rotifer biomass,
suggesting that rotifers respond positively to increases in
cyanobacteria, but do not appear to be able to suppress bloom
formation, as indicated by the lack of depression of
cyanobacteria biomass even at the highest abundances of
rotifers (Figure 3j). The relative resistance of many
cyanobacteria to strong top-down control by zooplankton
grazers has been widely discussed in the literature, as it relates
to the presence of grazing inhibitors,”'*'® or secondary trophic
effects.”>"®

For copepods, the relationships to cyanobacteria were
positive but nonlinear, with a narrow threshold range of
response (Figure 3i). Interpreting the implications of this
relationship is complicated by the diverse trophic character of
copepods, which include many carnivorous as well as
omnivorous taxa.”” The sharp response threshold for the
cyanobacteria—copepod relationship may in part reflect the
seasonal coincidence of peaks in copepod and cyanobacteria
biomass. In addition, top-down pressure by copepods on
smaller zooplankton grazers of phytoplankton (e.g., protozoans,
rotifers) may lower grazing pressure on cyanobacteria.

Methodological Implications. Ideally, mechanistic water
quality modeling would effectively simulate time-varying
dynamics of cyanobacteria; however, the capacity of such
models remains limited.””°® At present, data-intensive methods
(e.g, Random Forests models) are among the most rigorous
tools available for the study of complex organism community
dynamics using long-term monitoring data. The Random
Forests machine learning algorithm utilized here offers a
straightforward and assumption-free approach to developing an
initial appraisal of how important potentially manageable (e.g.,
nutrient loads) versus nonmanageable (e.g,, water temperature)
system features are as predictors of cyanobacteria dynamics.

Although the Random Forests models were employed for
explanatory modeling (i.e, describing observed dynamics) in
the case presented here, the use of S-repeated S-fold cross
validation provided insight into the degree to which the models
could be used for general prediction purposes. All of the model
suites performed reasonably well when applied to testing data
(Figure 1b), which suggests that the explanatory variables
considered in this analysis are important descriptors of
cyanobacteria dynamics. However, some efliciencies associated
with individual testing model runs were low (ie, NSE < 0),
which suggests that additional descriptors should be incorpo-
rated into the models to increase their predictive capacities.
Future research efforts should consider evaluating whether
cyanobacteria genera, as opposed to environmental covariates,
better predict the dynamics of other genera. Moreover, as this
study was limited by the temporal resolution of the long-term
monitoring data program, opportunities exist to expand this
analysis by repeating it in a setting with higher-resolution data;
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given higher-resolution data, the robustness of the sensitivities
and nonlinearities reported here could be assessed across a
variety of temporal scales.

Applying Random Forests models to a broad variety of
aquatic systems impacted by cyanobacteria blooms would help
to advance our understanding of the factors that can be
managed to mitigate blooms, and such applications should be
the focus of future studies. This analysis serves as a case study
to guide other researchers and practitioners in their efforts to
leverage machine learning tools for the study of water quality
phenomena.

B ASSOCIATED CONTENT

© Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.est.7b05884.

Additional details on data processing, modeling work-
flow, and summary of observed data (PDF)

B AUTHOR INFORMATION

Corresponding Author
*E-mail: carpena@ufl.edu.

ORCID
Rafael Mufioz-Carpena: 0000-0003-2838-1514

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship under
Grant No. DGE-0802270, USDA NIFA Hatch Project
1011481, and St. John River Water Management District
Contract No. 28650. RM.-C. acknowledges support for the UF
Water Institute Fellowship.

B REFERENCES

(1) Paerl, H. W.; Otten, T. G. Blooms bite the hand that feeds them.
Science 2013, 342 (6157), 433—434.

(2) Paerl, H. W,; Fulton, R. S.; Moisander, P. H.; Dyble, J. Harmful
freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World
J. 2001, 1, 76—113.

(3) Glibert, P.; Anderson, D.; Gentien, P.; Granéli, E.; Sellner, K. The
Global, Complex Phenomena of Harmful Algal Blooms. Oceanography
2005, 18 (2), 136—147.

(4) Paerl, H. W.; Huisman, J. Climate change: A catalyst for global
expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep.
2009, 1 (1), 27-37.

(5) O’'Neil, J. M.; Davis, T. W.; Burford, M. A.; Gobler, C. J. The rise
of harmful cyanobacteria blooms: The potential roles of eutrophication
and climate change. Harmful Algae 2012, 14, 313—334.

(6) Carey, C. C.; Ibelings, B. W.; Hoffmann, E. P.; Hamilton, D. P.;
Brookes, J. D. Eco-physiological adaptations that favour freshwater
cyanobacteria in a changing climate. Water Res. 2012, 46 (S), 1394—
1407.

(7) Paerl, H. W.; Huisman, J. Blooms Like It Hot. Science
(Washington, DC, U. S.) 2008, 320, S7—S8.

(8) Havens, K; Paerl, H; Phlips, E; Zhu, M.; Beaver, J.; Srifa, A.
Extreme Weather Events and Climate Variability Provide a Lens to
How Shallow Lakes May Respond to Climate Change. Water 2016, 8
(6), 229.

(9) Paerl, H. W. Nuisance phytoplankton blooms in coastal,
estuarine, and inland waters. Limnol. Oceanogr. 1988, 33 (4part2),
823—843.

3534

(10) Oliver, R. L; Hamilton, D. P.; Brookes, J. D.; Ganf, G. G.
Physiology, Blooms and Prediction of Planktonic Cyanobacteria. In
Ecology of Cyanobacteria II: Their Diversity in Space and Time; Springer:
Dordrecht, 2012; pp 1-13.

(11) Howarth, R. W.,; Marino, R;; Cole, J. J. Nitrogen fixation in
freshwater, estuarine, and marine ecosystems. 1. Rates and importance.
Limnol. Oceanogr. 1988, 33, 688—701.

(12) Howarth, R. W,; Marino, R;; Cole, J. J. Nitrogen fixation in
freshwater, estuarine, and marine ecosystems. 2. Biogeochemical
control. Limnol. Oceanogr. 1988, 33, 688—701.

(13) Reynolds, C. Ecology of Phytoplankton; Cambridge University
Press: Cambridge, U.K., 2006.

(14) Oliver, R. L.; Walsby, A. E. Direct evidence for the role of light-
mediated gas vesicle collapse in the buoyancy regulation of Anabaena
flos-aquae (cyanobacteria). Limnol. Oceanogr. 1984, 29 (4), 879—886.

(15) Lampert, W. Laboratory studies on zooplankton-cyanobacteria
interactions. N. Z. J. Mar. Freshwater Res. 1987, 21, 483—490.

(16) Wilson, A. E; Sarnelle, O.; Tillmanns, A. R. Effects of
cyanobacterial toxicity and morphology on the population growth of
freshwater zooplankton: Meta-analyses of laboratory experiments.
Limnol. Oceanogr. 2006, S1 (4), 1915—1924.

(17) Paerl, H. W,; Otten, T. G. Duelling “CyanoHABs”: Unravelling
the environmental drivers controlling dominance and succession
among diazotrophic and non-N2-fixing harmful cyanobacteria. Environ.
Microbiol. 2016, 18 (2), 316—324.

(18) Reynolds, C. S.; Huszar, V.; Kruk, C.; Naselli-Flores, L.; Melo, S.
Towards a functional classification of the freshwater phytoplankton. J.
Plankton Res. 2002, 24 (5), 417—428.

(19) Schindler, D. W.; Hecky, R. E.; Findlay, D. L.; Stainton, M. P,;
Parker, B. R.; Paterson, M. J.; Beaty, K. G.; Lyng, M.; Kasian, S. E. M.
Eutrophication of lakes cannot be controlled by reducing nitrogen
input: Results of a 37-year whole-ecosystem experiment. Proc. Natl.
Acad. Sci. U. S. A. 2008, 105 (32), 11254—11258.

(20) Schindler, D. W.; Carpenter, S. R;; Chapra, S. C.; Hecky, R. E.;
Orihel, D. M. Reducing phosphorus to curb lake eutrophication is a
success. Environ. Sci. Technol. 2016, 50 (17), 8923—8929.

(21) Conley, D. J; Paerl, H. W.; Howarth, R. W.; Boesch, D. F,;
Seitzinger, S. P.; Havens, K. E.; Lancelot, C.; Likens, G. E. Controlling
eutrophication: nitrogen and phosphorus. Science (Washington, DC, U.
S.) 2009, 323 (5917), 1014—1015.

(22) Paerl, H. W. Controlling Eutrophication along the Freshwater—
Marine Continuum: Dual Nutrient (N and P) Reductions are
Essential. Estuaries Coasts 2009, 32 (4), 593—601.

(23) Paerl, H. W,; Scott, J. T.; McCarthy, M. J.; Newell, S. E.;
Gardner, W. S.; Havens, K. E,; Hoffman, D. K,; Wilhelm, S. W.;
Waurtsbaugh, W. A. It Takes Two to Tango: When and Where Dual
Nutrient (N & P) Reductions Are Needed to Protect Lakes and
Downstream Ecosystems. Environ. Sci. Technol. 2016, 50 (20), 10805—
10813.

(24) Phlips, E. J; Cichra, M; Aldridge, F. J; Jembeck, J;
Hendrickson, J; Brody, R. Light availability and variations in
phytoplankton standing crops in a nutrient-rich blackwater river.
Limnol. Oceanogr. 2000, 45 (4), 916—929.

(25) Piehler, M. F.; Dyble, J.; Moisander, P. H; Chapman, A. D,;
Hendrickson, J.; Paerl, H. W. Interactions between nitrogen dynamics
and the phytoplankton community in Lake George, Florida, USA. Lake
Reservoir Manage. 2009, 25 (1), 1—14.

(26) Stewart, J.; Sucsy, P.; Hendrickson, J. Meteorological and
subsurface factors affecting estuarine conditions within Lake George in
the St Johns River, Florida. In 7th International Conference on
HydroScience and Engineering; Philadelphia, PA, 2006.

(27) Srifa, A; Phlips, E. J; Cichra, M. F; Hendrickson, J. C.
Phytoplankton dynamics in a subtropical lake dominated by
cyanobacteria: cyanobacteria “Like it Hot” and sometimes dry.
Aquat. Ecol. 2016, 50, 163—174.

(28) Srifa, A.; Phlips, E. J.; Hendrickson, J. How many seasons are
there in a sub-tropical lake? A multivariate statistical approach to
determine seasonality and its application to phytoplankton dynamics.
Limnologica 2016, 60, 39—50.

DOI: 10.1021/acs.est.7b05884
Environ. Sci. Technol. 2018, 52, 3527—3535


http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.est.7b05884
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b05884/suppl_file/es7b05884_si_001.pdf
mailto:carpena@ufl.edu
http://orcid.org/0000-0003-2838-1514
http://dx.doi.org/10.1021/acs.est.7b05884

Environmental Science & Technology

(29) Latja, R;; Salonen, K. Carbon analysis for the determination of
individual biomass of planktonic animals. Verh. - Int. Ver. Theor. Angew.
Limnol. 1978, 20, 2556—2560.

(30) Work, K; Havens, K.; Sharfstein, B.; East, T. How important is
bacterial carbon to planktonic grazers in a turbid, subtropical lake? J.
Plankton Res. 2005, 27 (4), 357—372.

(31) Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5—32.

(32) Cutler, D. R.; Edwards, T. C.; Beard, K. H.; Cutler, A.; Hess, K.
T.; Gibson, J.; Lawler, J. J. Random forests for classification in ecology.
Ecology 2007, 88 (11), 2783—2792.

(33) Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed; Springer
Science & Business Media: New York, 2009.

(34) Jones, Z.; Linder, F. Exploratory Data Analysis using Random
Forests. In 73rd Annual MPSA Conference; 2015; pp 1-31.

(35) Jones, Z. M; Linder, F. J. Edarf: Exploratory Data Analysis using
Random Foresets. J. Open Source Softw. 2016, 1 (6), 92.

(36) Phlips, E. J; Hendrickson, J.; Quinlan, E. L; Cichra, M.
Meteorological influences on algal bloom potential in a nutrient-rich
blackwater river. Freshwater Biol. 2007, 52 (11), 2141—2155.

(37) Leonard, J. A; Paerl, H. W. Zooplankton community structure,
micro-zooplankton grazing impact, and seston energy content in the
St. Johns river system, Florida as influenced by the toxic
cyanobacterium Cylindrospermopsis raciborskii. Hydrobiologia 2008,
537 (1-3), 89—97.

(38) Paerl, H. W,; Otten, T. G. Harmful Cyanobacterial Blooms:
Causes, Consequences, and Controls. Microb. Ecol. 2013, 65, 995—
1010.

(39) Stolte, W.; Garcés, E. Ecological aspects of harmful algal in situ
population growth rates. In Ecology of Harmful Algae; Springer-Verlag:
Berlin, 2006; pp 139—152.

(40) Suda, S; Watanabe, M. M,; Otsuka, S.; Mahakahant, A;
Yongmanitchai, W.; Nopartnaraporn, N.; Liu, Y,; Day, J. G.
Taxonomic revision of water-bloom-forming species of oscillatorioid
cyanobacteria. Int. . Syst. Evol. Microbiol. 2002, 52 (5), 1577—1595.

(41) Wacklin, P.; Hoffmann, L.; Komarek, J. Nomenclatural
validation of the genetically revised cyanobacterial genus Dolicho-
spermum (Ralfs ex Bornet et Flahault) comb. nova. Fottea 2009, 9 (1),
59—64.

(42) Ritter, A; Mufioz-Carpena, R. Performance evaluation of
hydrological models: Statistical significance for reducing subjectivity in
goodness-of-fit assessments. J. Hydrol. 2013, 480, 33—4S.

(43) Mantzouki, E.; Visser, P. M.; Bormans, M.; Ibelings, B. W.
Understanding the key ecological traits of cyanobacteria as a basis for
their management and control in changing lakes. Aquat. Ecol. 2016, S0
(3), 333-350.

(44) Rigosi, A; Carey, C. C.; Ibelings, B. W.; Brookes, J. D. The
interaction between climate warming and eutrophication to promote
cyanobacteria is dependent on trophic state and varies among taxa.
Limnol. Oceanogr. 2014, 59 (1), 99—114.

(45) Gerloff, G. C.; Skoog, F. Nitrogen as a Limiting Factor for the
Growth of Microcystis Aeruginosa in Southern Wisconsin Lakes.
Ecology 1957, 38 (4), 556—561.

(46) Baldia, S. F.; Evangelista, A. D.; Aralar, E. V.; Santiago, A. E.
Nitrogen and phosphorus utilization in the cyanobacterium Micro-
cystis aeruginosa isolated from Laguna de Bay, Philippines. J. Appl.
Phycol. 2007, 19, 607—613.

(47) Peng, G.; Fan, Z.; Wang, X.; Chen, C. Photosynthetic response
to nitrogen source and different ratios of nitrogen and phosphorus in
toxic cyanobacteria, Microcystis aeruginosa FACHB-905. J. Limnol.
2015, 75 (3), 560—570.

(48) Visser, P. M.; Ibelings, B. W.; Mur, L. R;; Walsby, A. E. The
Ecophysiology of the Harmful Cyanobacterium Microcystis. Harmful
Cyanobacteria 2008, 3, 109—142.

(49) Malecki, L. M.; White, J. R; Reddy, K. R. Nitrogen and
Phosphorus Flux Rates from Sediment in the Lower St. Johns River
Estuary. J. Environ. Qual. 2004, 33, 1545—1555.

3535

(50) Hendrickson, J.; Mattson, R.; Sucsy, P. Recommended Ecosystem
Performance Targets to Achieve Designated Use in Lake George, Florida;
Palatka, FL, 2017.

(51) Cottingham, K. L.; Ewing, H. A; Greer, M. L;; Carey, C. C;
Weathers, K. C. Cyanobacteria as biological drivers of lake nitrogen
and phosphorus cycling. Ecosphere 2018, 6 (1), 1-19.

(52) Reynolds, C. S.; Oliver, R. L; Walsby, A. E. Cyanobacterial
dominance: The role of buoyancy regulation in dynamic lake
environments. N. Z. J. Mar. Freshwater Res. 1987, 21, 379—390.

(53) Andersson, A.; Hoglander, H.; Karlsson, C.; Huseby, S. Key role
of phosphorus and nitrogen in regulating cyanobacterial community
composition in the northern Baltic Sea. Estuarine, Coastal Shelf Sci.
2015, 164, 161—171.

(54) Vahtera, E,; Conley, D. J; Gustafsson, B. G.; Kuosa, H.;
Pitkinen, H.; Savchuk, O. P.; Tamminen, T.; Viitasalo, M.; Voss, M;
Wasmund, N.; Wulff, F. Internal Ecosystem Feedbacks Enhance
Nitrogen-fixing Cyanobacteria Blooms and Complicate Management
in the Baltic Sea. Ambio 2007, 36 (2—3), 186—194.

(55) Scott, J. T.; Doyle, R. D.; Prochnow, S. J.; White, J. D. Are
watershed and lacustrine controls on planktonic N2 fixation
hierarchically structured? Ecol. Appl. 2008, 18 (3), 805—819.

(56) Paerl, H. W.; Scott, J. T. Throwing fuel on the fire: Synergistic
effects of excessive nitrogen inputs and global warming on harmful
algal blooms. Environ. Sci. Technol. 2010, 44 (20), 7756—7758.

(57) Scott, J. T.; McCarthy, M. J. Nitrogen fixation may not balance
the nitrogen pool in lakes over timescales relevant to eutrophication
management. Limnol. Oceanogr. 2010, 55 (3), 1265—1270.

(58) Hendrickson, J.; Lowe, E. F.; Dobberfuhl, D.; Campbell, D.
Characteristics of Accelerated Eutrophication in the Lower St. Johns River
Estuary and Recommended Targets to Achieve Water Quality Goals for the
Fulfillment of TMDL and PLRG Objectives; Palatka, Florirda, 2003.

(59) Doron, M. Aquatic nitrogen fixation: Patterns, rates and controls in
a shallow, subtropical lake; University of Florida, 2010.

(60) Paerl, H. W,; Paul, V. J. Climate change: Links to global
expansion of harmful cyanobacteria. Water Res. 2012, 46 (S), 1349—
1363.

(61) Soares, M. C. S.; Rocha, M. L. D. A;; Marinho, M. M.; Azevedo,
S. M. F. O,; Branco, C. W. C,; Huszar, V. L. M. Changes in species
composition during annual cyanobacterial dominance in a tropical
reservoir: physical factors, nutrients and grazing effects. Aquat. Microb.
Ecol. 2009, 57, 137—149.

(62) Arhonditsis, G. B.; Stow, C. a.; Paerl, H. W.; Valdes-Weaver, L.
M,; Steinberg, L. J.; Reckhow, K. H. Delineation of the role of nutrient
dynamics and hydrologic forcing on phytoplankton patterns along a
freshwater-marine continuum. Ecol. Modell. 2007, 208 (2—4), 230—
246.

(63) Bormans, M.; Ford, P. W.; Fabbro, L. Spatial and temporal
variability in cyanobacterial populations controlled by physical
processes. J. Plankton Res. 2008, 27 (1), 61—70.

(64) Paerl, H. W,; Hall, N. S.; Peierls, B. L.; Rossignol, K. L. Evolving
Paradigms and Challenges in Estuarine and Coastal Eutrophication
Dynamics in a Culturally and Climatically Stressed World. Estuaries
Coasts 2014, 37 (2), 243—258.

(65) Sarnelle, O. Herbivore Effects on Phytoplankton Succession in a
Eutrophic Lake. Ecol. Monogr. 1993, 63 (2), 129—149.

(66) Kleppel, G. S. On the diets of calanoid copepods. Mar. Ecol.:
Prog. Ser. 1993, 99, 183—195.

(67) Shimoda, Y.; Arhonditsis, G. B. Phytoplankton functional type
modelling: Running before we can walk? A critical evaluation of the
current state of knowledge. Ecol. Modell. 2016, 320, 29—43.

(68) Rigosi, A.; Fleenor, W.; Rueda, F. State-of-the-art and recent
progress in phytoplankton succession modelling. Environ. Rev. 2010,
18 (NA), 423—440.

DOI: 10.1021/acs.est.7b05884
Environ. Sci. Technol. 2018, 52, 3527—3535


http://dx.doi.org/10.1021/acs.est.7b05884

