

Course Introduction and Wetlands 101

Wetlands Ecology (EES 6308C)
Week 1

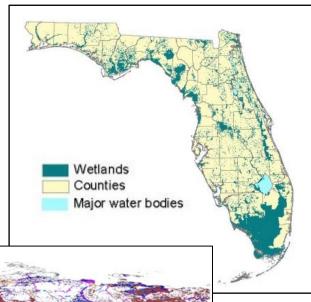
David Kaplan, Ph.D. (<u>dkaplan@ufl.edu</u>)
UF Environmental Engineering Sciences
www.watershedecology.org

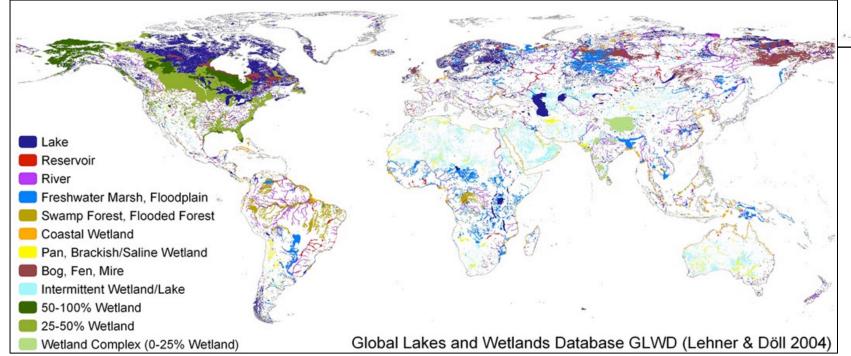
Motivations...why are we here?

www.quokka.wikis paces.com/Causes+of+Endangerment

Word cloud built from the *NYT "Wetlands"* RSS feed via www.wordle.net

Wetland Ecosystems


Wetland Ecosystems



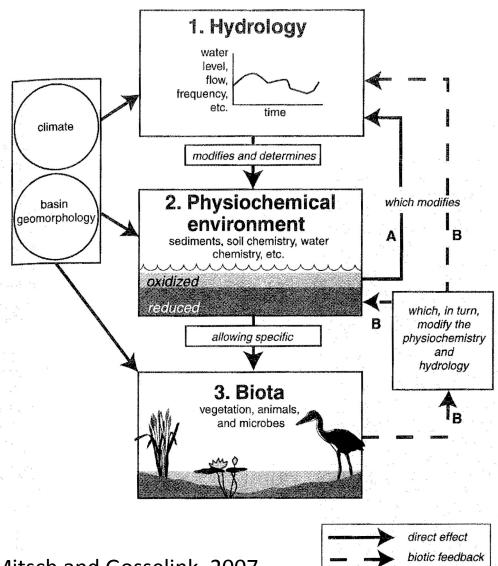
Wetland Ecosystems

Wetland Fun Facts

- Make up 6% of Earth's land surface
- Occur in (nearly) all climates
- Regulate global biogeochemical cycles
- Highly productive and diverse ecosystems

Overview

Wetlands 101


- 1. Definitions
- 2. Form and Function
- 3. Values
- 4. Types

Big Cypress National Preserve, FL (MOFAC, S. Florida State College)

What is a wetland?

- 1. Hydrology
- 2. Soil
- 3. Vegetation

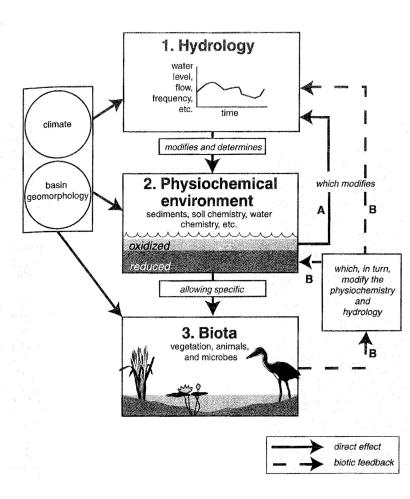
Mitsch and Gosselink, 2007


What is a wetland?

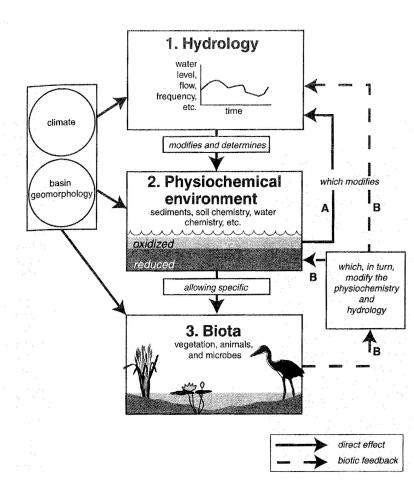
- 1. Hydrology
- 2. Soil
- 3. Vegetation

Wet enough for anaerobic conditions... but not too deep to exclude vegetation

Anaerobic conditions

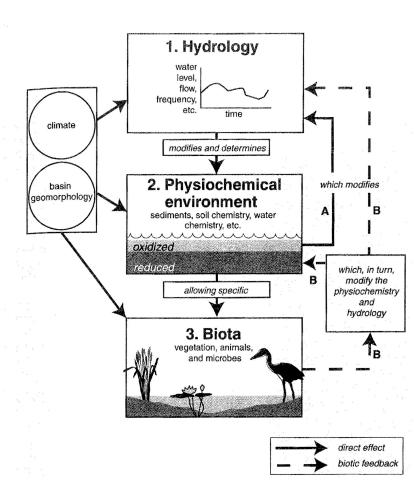

create hydric soils and specialized (adapted) flora to tolerate anaerobic conditions

Mitsch and Gosselink, 2007


What is a wetland?

Hydrology: Permanent or periodic inundation at mean water depth <6.6 ft, or the soil saturated to the surface at some time during the growing season of the prevalent vegetation → Hydroperiod!

Hydrology: Permanent or periodic inundation at mean water depth <6.6 ft, or the soil saturated to the surface at some time during the growing season of the prevalent vegetation → Hydroperiod!


<u>Hydric Soils</u>: Presence of hydric soils...possess characteristics that are associated with reducing (anaerobic) soil conditions

Hydrology: Permanent or periodic inundation at mean water depth <6.6 ft, or the soil saturated to the surface at some time during the growing season of the prevalent vegetation → Hydroperiod!

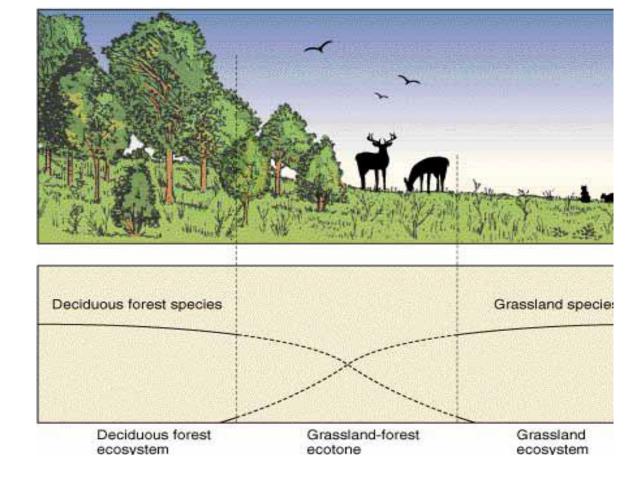
<u>Hydric Soils</u>: Presence of hydric soils...possess characteristics that are associated with reducing (anaerobic) soil conditions

<u>Vegetation</u>: Hydrophytic species are present, due to morphological, physiological, and/or reproductive **adaptations**...and have the ability to grow, compete, reproduce, and persist in **anaerobic soil conditions**.

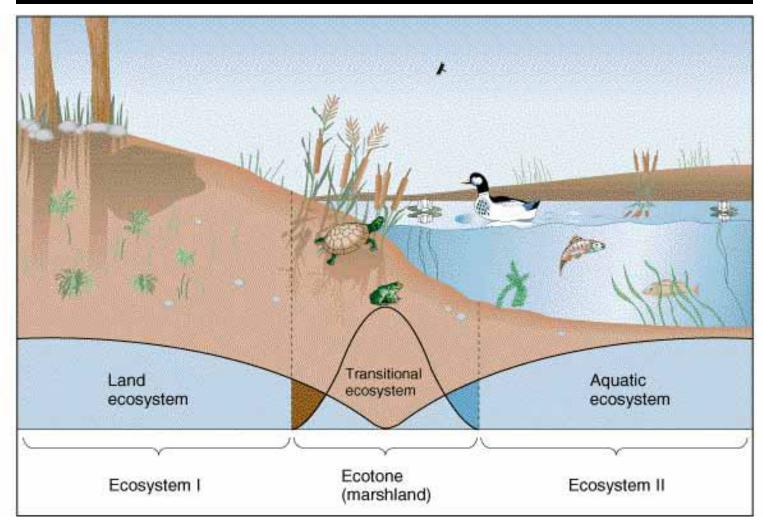
MORE Wetland Definitions

EPA (Section 404 CWA):

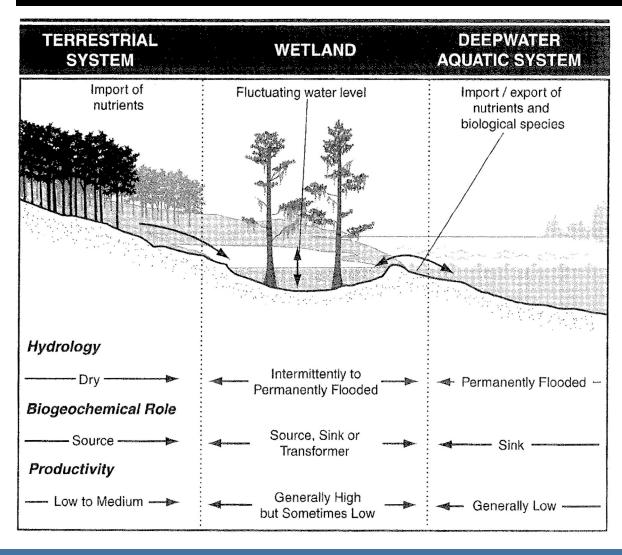
Those areas that are inundated or <u>saturated by surface or groundwater</u> at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of <u>vegetation typically adapted for</u> life in saturated soil conditions.

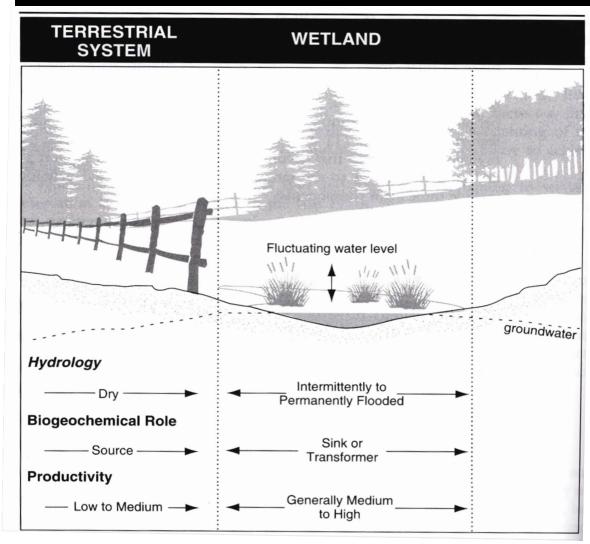

NRC (1995):

...an ecosystem that depends on <u>constant or recurrent</u>, <u>shallow inundation or saturation at or near the surface</u> of the substrate. The minimum essential characteristics of a wetland are recurrent, sustained inundation or saturation at or near the surface and the presence of physical, chemical, and biological features reflective of recurrent, sustained inundation or saturation. <u>Common diagnostic features of wetlands are hydric soils and hydrophytic vegetation</u>. These features will be present except where specific physiochemical, biotic, or anthropogenic factors have removed them or prevented their development.


Wetlands = "Ecotones" or Unique Ecosystems?

Ecotones:


- Transitional areas between adjacent ecosystems
- Species live near edge of their tolerance
- Supports unique plant and wildlife species "ecotone specialists"
- Species composition influenced by both communities


Wetlands = "Ecotones" or Unique Ecosystems?

Wetlands = "Ecotones" or Unique Ecosystems?

Wetlands = "Ecotones" or Unique Ecosystems?

Difficulty Defining Wetlands?

- 1. Varying depth and duration of inudation
- 2. Often considered as ecotones
- 3. Wetland plants are adaptive (facultative vs. obligate)
- 4. Size and structure are variable
- 5. Wetland condition and human influence varies greatly

"Take A Break, Why Not!" February 2007

96"x48"

Catalog #1427

\$200 (shipping not available)

Resources ("Homework")

1. Books:

- Wetlands (Mitsch and Gosselink, 2007) on reserve in Marston Library
- Wetland Ecosystems (Mitsch et al., 2009)
- Wetland Ecology (Keddy, 2010)
- Wetland Biogeochemistry (Reddy and DeLaune, 2008)
- 2. <u>Journals</u>: Ecological Engineering, Wetlands, Wetland Ecology and Management, Water Resources Research, Journal of Environmental Quality, Ecology, Restoration Ecology, Ecological Restoration

3. Websites:

- EPA Constructed Wetlands Site: http://water.epa.gov/type/wetlands/restore/cwetlands.cfm
- Atlas of Florida Vascular Plants: www.florida.plantatlas.usf.edu/
- Florida Natural Areas Inventory (FNAI) Guide to the Natural Communities of Florida: <u>www.fnai.org/pdf/nc/FNAI_NatComGuide_2010.pdf</u>
- FDEP Wetland Evaluation and Delineation: www.dep.state.fl.us/water/wetlands/delineation/
- National Wetlands Inventory: <u>www.fws.gov/wetlands/</u>
- Wetlands Seminar @ 11:45 on Wednesdays in the Phelps Lab,
 Center for Wetlands

Assignments

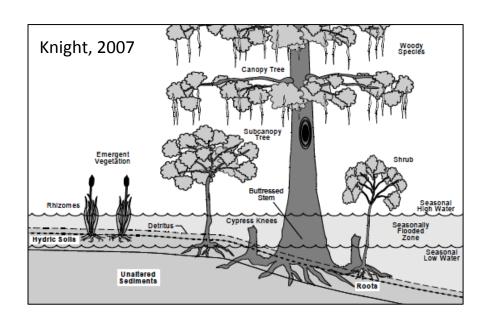
Assignment 1: A semester-long, partially-guided field exercise to find and identify 25 species of wetland plants (of your choosing) and create a wetland plant identification guide. The first part of this assignment is to visit a local wetland and describe 5 different plants you believe to be "wetland plants." Detailed instructions on data collection to follow.

<u>Assignment 2</u>: Choose a common wetland type, a specific nearby wetland, or a large, well-studied system. Get started now reading and cataloging information pertaining to your chosen wetland system, while also formulating hypotheses for <u>Assignment 3</u>.

Overview

Wetlands 101

- 1. Definitions
- 2. Processes
- 3. Functions
- 4. Types



Big Cypress National Preserve, FL (MOFAC, S. Florida State College)

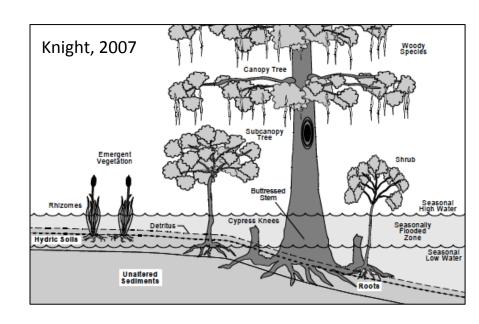
Drivers, Structure, and Function

Forcing Functions

- Sunlight
- Water flows (rain, runoff, SW, GW, etc,)
- Wind and atmospheric gasses
 - CO₂, O₂, N₂
- Seeds/propagules

Wetland Structure

- •
- •
- •
- •


Wetland Function

- TT CTGTTGT GTTGTGT
- •
- •
- •
- •

Drivers, Structure, and Function

Forcing Functions

- Sunlight
- Water flows (rain, runoff, SW, GW, etc,)
- Wind and atmospheric gasses
 - CO₂, O₂, N₂
- Seeds/propagules

Wetland Structure

- Water
- Soil (organic + mineral) & detritus
- Plants
- Animals
- Others?

Wetland Function

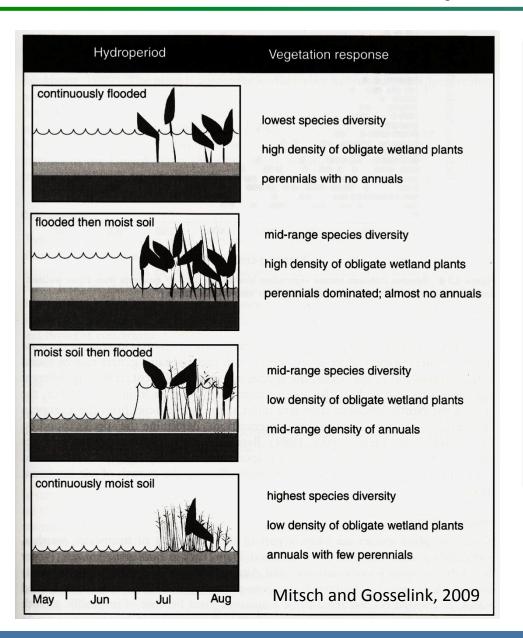
- 1⁰ productivity (plants)
- 2^o productivity (consumers)
- Peat formation
- Water storage and purification
- Evapotranspiration

Wetland Structure

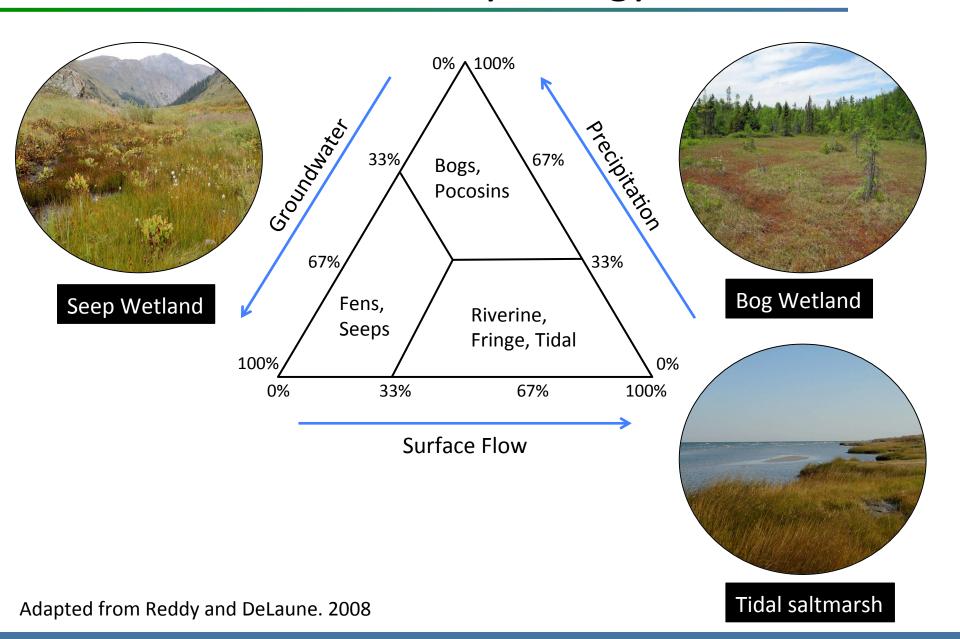
What is a wetland?

- 1. Hydrology
- 2. Soil
- 3. Vegetation

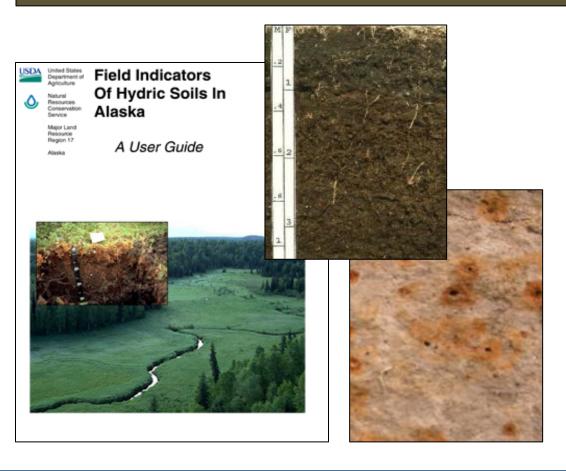
Anaerobic conditions created by flooding and saturation create hydric soils and specialized (adapted) flora to tolerate lack of oxygen


Wetland Structure: Hydrology

"Areas with evident characteristics of wetland hydrology are those where the presence of water has an overriding influence on characteristics of vegetation and soils due to anaerobic and reducing conditions, respectively." (USACE)

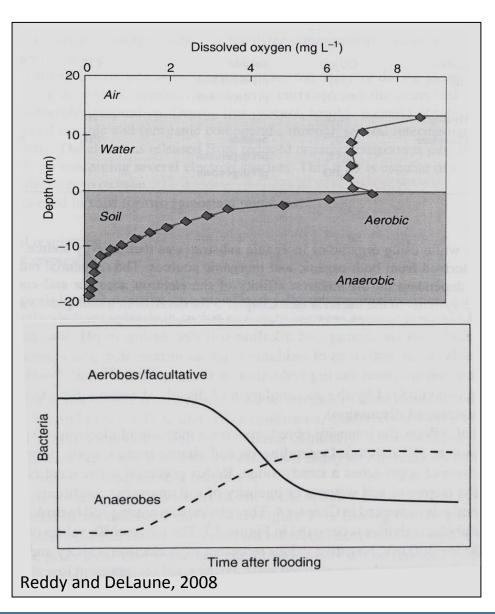

Wetland Structure: Hydrology

<u>Hydroperiod</u>


- Seasonal pattern of the water level of a wetland
- "Hydrologic signature"
- Characterizes wetland types
- Consistent pattern creates wetland stability
- Drives plant reproductive strategies & adaptations

Wetland Parameters: Hydrology

Wetland Structure: Hydric Soils


"...a soil that formed under conditions of saturation, flooding or ponding long enough during the growing season to develop anaerobic conditions in the upper part." (NRCS)

Wetland Structure: Hydric Soils

"...a soil that formed under conditions of saturation, flooding or ponding long enough during the growing season to develop <u>anaerobic conditions</u> in the upper part." (NRCS)

FIELD INDICATORS OF HYDRIC SOILS

All Soils	Sandy Soils	Loamy and Clayey Soils
A1. Histosols	S1. Sandy Mucky Mineral	F1. Loamy Mucky Mineral
A2. Histic Epipedon	S2. 2.5 cm Mucky Peat or Peat	F2. Loamy Gleyed Matrix
A3. Black Histic	S3. 5 cm Mucky Peat or Peat	F3. Depleted Matrix
A4. Hydrogen Sulfide	S4. Sandy Gleyed Matrix	F4. Depleted Below Dark Surface (A11)
A5. Stratified Layers	S5. Sandy Redox	F5. Thick Dark Surface (A12)
A6. Organic Bodies	S6. Stripped Matrix	F6. Redox Dark Surface
A7. 5 cm Mucky Mineral	S7. Dark Surface	F7. Depleted Dark Surface
A8. Muck Presence	S8. Polyvalue Below Surface	F8. Redox Depressions
A9. 1 cm Muck	S9. Thin Dark Surface	F9. Vernal Pools
A10. 2 cm Muck	S10. Alaska Gleyed	F10. Marl
A11. Depleted Below Dark Surface		F11. Depleted Ochric F12. Fe-Mn Masses
A12. Thick Dark Surface		F13. Umbric Surface
A13. Alaska Gleyed		F14. Alaska Redox Gleyed (A14)
A14. Alaska Redox		F15. Alaska Gleyed Pores (A15)
A15. Alaska Gleyed Pores		F16. High Plains Depressions
A16. Coast Prairie Redox		F17. Delta Ochric
		F18. Reduced Vertic
		F19. Piedmont Flood Plain Soils
		F20. Anomalous Bright Loamy Soils

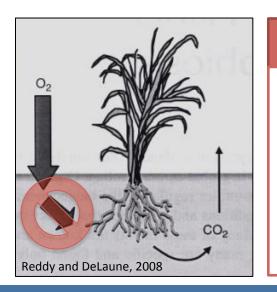
<u>Hydrophytes</u>: flood-tolerant plant species with adaptations to <u>tolerate</u> or <u>avoid</u> stress

Red mangrove (Rhizophora mangle)

Bald cypress (Taxodium distichum)

Spatterdock (Nuphar lutea)

Hydrophytes: flood-tolerant plant species with adaptations to tolerate or avoid stress


Red mangrove (Rhizophora mangle)

Bald cypress (Taxodium distichum)

Spatterdock (Nuphar lutea)

Anoxia \rightarrow Reduced O_2 for root metabolism

- Root development
- Nutrient uptake & transport
- Photosynthesis
- Anaerobic processes → accumulation of toxins

Adaptations for dealing with anoxia:

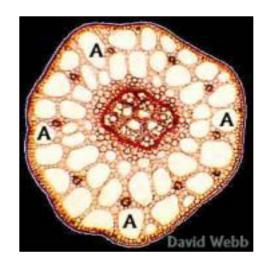
Structural/Morphological

- Aerenchyma tissue
- Adventitious roots
- Fluted trunks
- Lenticels
- Pneumatophores
- Rapid growth
- Shallow root systems
- Stem hypertrophy

Physiological

- Altered nutrient absorption
- Anaerobic respiration
- Pressurized gas flow
- Rhizosphere oxygenation

Whole Plant


- Seed production timing
- Buoyant seeds
- Vivipary
- Persistent seed bank
- Rot-resistant roots, tubers, seeds

Get O_2 to the Roots (or, get roots to O_2)!

Reproduce!

<u>Aerenchyma</u> – tissue containing large, airfilled intercellular space

- Allows exchanges of gasses between atmosphere and plant roots
- Produced under flooded conditions
- Passive flow

<u>Pneumatophores</u> – aerial roots

- Black mangrove (Avicennia germinans) → "snorkels"
- Cypress (Taxodium spp.) → "knees"

Overview

Wetlands 101

- 1. Definitions
- 2. Form and Function
- 3. Values
- 4. Types

Everglades National Park (www.Everglades-Seres.org)

Wetland Functions and Values

Also: GW recharge, Food, Fiber & Fuel...others?

Vermont Department of Environmental Conservation (www.vtwaterquality.org/wetlands/)

Wetland Types

7 Major Wetland Types

Coastal (~5%)

- 1. Tidal salt marsh
- 2. Mangrove forest (swamp)
- 3. Tidal freshwater marsh

Inland (~95%)

- 4. Freshwater marsh
- 5. Freshwater swamp
- 6. Riparian wetland
- 7. Peatlands

Wetland Type a Function of:

- Physiogeograhpic setting
- Hydroperiod
- Vegetation

Wetland Types (an abbreviated list...)

Bog	Peat accumulation usually dominated by moss. Receives only direct precipitation; characterized by acid water, low alkalinity, and low nutrients.
Fen	Peat accumulation; may be dominated by sedge, reed, shrub or forest. Receives some surface runoff and/or ground water, which has neutral pH and moderate to high nutrients.
Mire	Used mainly in Europe to include any peat-forming wetland (bog or fen).
Marsh	Permanently or periodically inundated site characterized by nutrient-rich water. In Europe, must have a mineral substrate and lack peat accumulation.
Playa	Shallow, ephemeral ponds or lagoons that experience significant seasonal changes in semiarid to arid climates. Often have high salinity or may be completely dry.
Slough	Widely used term for wetland environment in a channel or series of shallow lakes. Water is stagnant or may flow slowly on a seasonal basis. Synonymbayou.
Swamp	Characterized by forest, shrub, or reed cover (fen). Particularly a forested wetland in North America. Depends on nutrient-rich ground water derived from mineral soils.
Wet meadow	Open prairie, grassland or savannah with waterlogged soils but without standing water for most of the year.
Open water	Deeper, normally perennial pools within wetlands and shallow portions of lakes and rivers. Typically home to submerged macrophytes.

From Mitsch and Gosselink, 2007

Resources ("homework")

1. <u>Books</u>:

- Wetlands (Mitsch and Gosselink, 2007) on reserve in Marston Library
- Wetland Ecosystems (Mitsch et al., 2009)
- Wetland Ecology (Keddy, 2010)
- Wetland Biogeochemistry (Reddy and DeLaune, 2008)
- 2. <u>Journals</u>: Ecological Engineering, Wetlands, Wetland Ecology and Management, Water Resources Research, Journal of Environmental Quality, Ecology, Restoration Ecology, Ecological Restoration

3. Websites:

- EPA Constructed Wetlands Site: http://water.epa.gov/type/wetlands/restore/cwetlands.cfm
- Atlas of Florida Vascular Plants: www.florida.plantatlas.usf.edu/
- Florida Natural Areas Inventory (FNAI) Guide to the Natural Communities of Florida: <u>www.fnai.org/pdf/nc/FNAI_NatComGuide_2010.pdf</u>
- FDEP Wetland Evaluation and Delineation: www.dep.state.fl.us/water/wetlands/delineation/
- National Wetlands Inventory: <u>www.fws.gov/wetlands/</u>
- Wetlands Seminar @ 11:45 on Wednesdays in the Phelps Lab,
 Center for Wetlands

Next Time: Introduction to Ecology

http://www.epubbud.com/book.php?g=B66VF6FJ