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Abstract
We present a novel method for detecting red tide (Karenia brevis) blooms off the west coast of Florida, driven by a neural

network classifier that combines remote sensing data with spatiotemporally distributed in situ sample data. The network
detects blooms over a 1‐km grid, using seven ocean color features from the MODIS‐Aqua satellite platform (2002–2021) and
in situ sample data collected by the Florida Fish and Wildlife Conservation Commission and its partners. Model performance
was demonstrably enhanced by two key innovations: depth normalization of satellite features and encoding of an in situ
feature. The satellite features were normalized to adjust for depth‐dependent bottom reflection effects in shallow coastal
waters. The in situ data were used to engineer a feature that contextualizes recent nearby ground truth of K. brevis
concentrations through a K‐nearest neighbor spatiotemporal proximity weighting scheme. A rigorous experimental com-
parison revealed that our model outperforms existing remote detection methods presented in the literature and applied in
practice. This classifier has strong potential to be operationalized to support more efficient monitoring and mitigation of
future blooms, more accurate communication about their spatial extent and distribution, and a deeper scientific under-
standing of bloom dynamics, transport, drivers, and impacts in the region. This approach also has the potential to be
adapted for the detection of other algal blooms in coastal waters. Integr Environ Assess Manag 2024;00:1–15. © 2024 SETAC
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INTRODUCTION
Harmful algal blooms (HABs) in coastal and marine envi-

ronments are a growing concern in the United States and
around the world (Anderson et al., 2021; Sonak et al., 2018).
In the eastern Gulf of Mexico, blooms of the marine dino-
flagellate Karenia brevis—commonly referred to as red
tides—occur nearly every year, with adverse effects on
water quality, ecological communities, public health, and
economic activity particularly along the southwestern coast of
Florida (Bechard, 2021; Court et al., 2021; Sonak et al., 2018;
Turley et al., 2022). Red tide bloom initiation, transport, in-
tensification, and decline follow a complex cascade of at-
mospheric, oceanographic, and biogeochemical processes,
making them difficult to understand, predict, and mitigate
(Medina et al., 2022; Steidinger, 2009; Weisberg et al.,
2019).

Microscopic analysis of in situ samples is the conventional
method for detecting and quantifying K. brevis blooms.
Such field sampling has been instrumental in tracking
blooms along Florida's Gulf Coast and in estimating asso-
ciated environmental and economic impacts (Court
et al., 2021; Stumpf et al., 2022). Indeed, monitoring in this
area has been remarkably frequent and consistent over re-
cent decades (Heil & Steidinger, 2009). However, the spa-
tiotemporal resolution of in situ sampling is constrained by
the large spatial domain and the cost of sample collection
and processing. These sample data are therefore necessarily
spatiotemporally coarse, limiting their utility in real‐time
decision‐making and response efforts (Heil et al., 2014) and
in advancing our fundamental scientific knowledge of bloom
dynamics and drivers.
Remote sensing (RS)‐based approaches for red tide de-

tection, based on satellite imagery, hold promise for ad-
dressing this urgent need for reliable, spatially extensive, and
highly resolved bloom detection in near‐real time, with ap-
plications in the Gulf of Mexico and globally (Table 1). How-
ever, the majority of existing RS methods are based on simple
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empirical or feature thresholding (e.g., comparing the
chlorophyll‐a level against a threshold or detecting anomalies
in the chlorophyll‐a level) (e.g., Ahn & Shanmugam, 2006; de
Araujo Carvalho, 2008; Yunus et al., 2015). Further, these
methods require manual tuning of the threshold through
visual assessment and are thus difficult to automate.
The application of machine learning (ML) for remote de-

tection of K. brevis blooms is a relatively recent develop-
ment that presents the opportunity for automated learning
of the relationship between RS data and bloom conditions.
Existing approaches range from traditional ML methods
such as K‐nearest neighbors (KNNs), random forests, and

support vector machines (Cheng et al., 2009) to more recent
deep learning architectures such as convolutional neural
networks (CNN), long short‐term memory (LSTM), and
U‐Net. These ML‐based approaches have used a variety of
input features from a range of satellite sensors (e.g., MODIS,
SeaWiFS, GOCI, Landsat, Sentinel2, PlanetScope), but they
have rarely used in situ data for training or validation. The
current state of the art for ML‐based remote red tide de-
tection (with the greatest reported accuracy) is a CNN
classifier trained by a historical in situ record (Hill
et al., 2020). Critically, however, comparison of the per-
formance of ML methods presented in the literature is not

Integr Environ Assess Manag 2024:1–15 © 2024 SETACwileyonlinelibrary.com/journal/ieam

TABLE 1 Summary of methods published in the peer‐reviewed literature for red tide detection

Author Sensor(s) Approach Spatial application

Stumpf et al. (2003) SeaWiFS Chlorophyll anomalies and local knowledge Gulf of Mexico

Tomlinson et al. (2004) SeaWiFS Chlorophyll anomalies Gulf of Mexico

Hu et al. (2005) MODIS and SeaWiFS Qualitative bloom detection Gulf of Mexico

Ahn and
Shanmugam (2006)

SeaWiFS Red Tide Index Northeast Asia

Cannizzaro et al. (2008) MODIS and SeaWiFS − > /Chl a 1.5 mg m3 and bbp(550) less than Morel (1988)
relationship

Gulf of Mexico

Cannizzaro et al. (2009) MODIS ≤( ) /b 550 0.0045 m mgbp
2 and Gulf of Mexico

− > /Chl a 1.5 mg m3

Amin et al. (2009) MODIS Red band difference and Karenia brevis bloom index Gulf of Mexico

Cheng et al. (2009) MODIS SVM and Random forest and KNN Gulf of Mexico

Kim et al. (2009) MODIS Multistage algorithm Korean Sea

Tomlinson et al. (2009) MODIS and SeaWiFS Chlorophyll anomalies and bbp(550) from Cannizzaro
et al. (2008) and spectral shape at 490 nm

Gulf of Mexico

Carvalho et al. (2010) MODIS Bio‐optical and empirical and hybrid approaches from
de Araujo Carvalho (2008)

Gulf of Mexico

Gokaraju et al. (2011) MODIS and SeaWiFS Kernel SVM with KPCA and wavelet feature processing Gulf of Mexico

Al Shehhi et al. (2013) MODIS Correlation of features with bloom conditions Arabian Gulf

Lou and Hu (2014) GOCI Red Tide Index East China Sea

Yunus et al. (2015) Landsat OLI Hot spot analysis Tokyo Bay

Sakuno et al. (2019) Sentinel‐2 Red tide index Lake Koyama‐ike,
Japan

Lee et al. (2019) Landsat‐8 OLI Neural networks Korean Peninsula

Hill et al. (2020) MODIS CNN feature extraction, followed by classification with
LSTM, MLP, SVM, or Random Forest

Gulf of Mexico and
Arabian Gulf

Zhao et al. (2021) HY‐1D CZI Modified U‐Net (training labels from visual inspection) East China Sea

Shin et al. (2021) PlanetScope U‐Net (training labels from the red tide index) Korean Peninsula

Soto et al. (2021)
Bernard et al. (2021)

MODIS − > /

> / μ

<

Chl a

nFLH
b ratio

1.5mg m

0.01mW cm msr
1bp

3

2

Gulf of Mexico

Abbreviations: CNN, convolutional neural network; KNN, K‐nearest neighbor; KPCA, kernel principal component analysis; LSTM, long short‐term memory;
MLP, multilayer perceptron; SVM, support vector machine.
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straightforward, since performance is most often reported
solely in qualitative terms (e.g., visual comparison of pixel
classifications with in situ data on a map). In rare cases, in
which an individual study, such as Hill et al. (2020), reports
quantitative performance metrics, the results are typically
not directly comparable across studies due to differences in
the input data (e.g., different input datasets, splits for
training and testing data, or thresholds defining bloom and/
or nonbloom classes).
We propose a novel ML‐based remote red tide detection

method that combines RS data with in situ sample data
to predict K. brevis cell count concentration at a 1‐km reso-
lution over the West Florida Shelf and nearshore waters. The
method uses a neural network to classify satellite image
pixels into one of six classes of K. brevis cell concentration
(0–1000 cells/L, 1000–10 000 cells/L, 10 000–50000 cells/L,
50 000–100 000 cells/L, 100 000–1 000 000 cells/L, and
1 000 000+ cells/L) using MODIS ocean color features and in
situ sample data. Our method introduces two key innovations:
depth normalization of satellite features and engineering of an
additional feature from in situ data. The depth normalization
adjusts for the depth dependence of ocean color features
(e.g., chlorophyll) in shallow coastal waters, where remotely
detectable surface blooms often occur (Abbas et al., 2019).
The engineered in situ feature incorporates ground‐truth ob-
servations according to a KNN weighting scheme, repre-
senting a data assimilation approach (Deshmukh et al., 2016)
that fully leverages ongoing in situ sampling efforts.
Finally, we provide a rigorous and comprehensive

quantitative evaluation of our model's performance for
comparison with existing methods proposed in the liter-
ature and applied in practice. Ultimately, there are sig-
nificant opportunities to operationalize this classifier to
advance scientific understanding of bloom dynamics,
transport, evolution, and drivers; support efforts to miti-
gate blooms before they become too large to manage;
guide coastal bloom monitoring programs; and forecast
potential effects on wildlife, public health, and economic
indicators. In addition, our novel approach to model de-
velopment and rigorous evaluation of model performance
has strong potential for application to the detection and
monitoring of other HAB species.

METHODS

Data

This section outlines the datasets used in this work, in-
cluding MODIS satellite imagery, in situ K. brevis cell count
data from the Florida Fish and Wildlife Conservation Com-
mission (FWC), and bedrock depth maps from NOAA's
ETOPO1 model. These data sources were used to create
model input features and the target variables to be
predicted.

MODIS‐Aqua satellite imagery. Satellite imagery was ob-
tained from the MODIS‐Aqua sensor (NASA Goddard Space
Flight Center, 2021), chosen because it offers several de-
sirable properties for this work. Specifically, MODIS‐Aqua
provides data every 1–2 days due to the revisit time of the
satellite and the wide swath width of the sensor. It also has
the requisite wavelength bands for computing fluorescence
features that several authors have used for red tide de-
tection (Al Shehhi et al., 2013; Cheng et al., 2009; Hu
et al., 2005). Another benefit of the MODIS‐Aqua satellite is
that it launched in 2002, providing a long record of historical
data for model training relative to other available sensors (e.
g., Sentinel, Landsat‐8). For this work, all MODIS‐Aqua im-
ages from July 2002 to June 2021 covering Florida were
obtained. The Florida region was defined between 23.98° N
to 31.92° N and 79.15° W to 88.64° W. This region and time
period corresponded to 12 291 satellite image granules.
MODIS‐Aqua level 2 ocean color products were used

because they have already been processed to compensate
for atmospheric effects (Table 2). These products are pro-
vided with a spatial resolution of 1 km at nadir. Further de-
tails on the MODIS‐Aqua level 2 products and the
algorithms that are used to produce them can be found in
the NASA documentation (NASA Goddard Space Flight
Center, 2021).

Red tide in situ samples. In situ red tide sample data
(K. brevis concentrations) were obtained from FWC's HAB
Monitoring Database (Florida Fish and Wildlife Conservation
Commission, 2021a). The FWC bins data into five different
classification groups: 0–1000 cells/L, 1000–10 000 cells/L,

Integr Environ Assess Manag 2024:1–15 © 2024 SETACDOI: 10.1002/ieam.4908

TABLE 2 The top seven MODIS‐Aqua level‐2 ocean color features ranked according to recursive feature elimination (RFE)

Abbreviated feature name Full feature name RFE ranking

nflh Normalized fluorescence line height 1

Rrs488 Remote sensing reflectance at 488 nm 2

Kd490 Diffuse attenuation coefficient at 490 nm 3

par Photosynthetically available radiation 4

Rrs469 Remote sensing reflectance at 469 nm 5

chlora Chlorophyll concentration, ocean color index (OCI) algorithm 6

Rrs443 Remote sensing reflectance at 443 nm 7

MACHINE LEARNING FOR RED TIDE DETECTION—Integr Environ Assess Manag 00, 2024 3
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10 000–100 000 cells/L, 100 000–1 000 000 cells/L, and 1 000
000+ cells/L. To train our models, we use the same classi-
fication groups, but we split the 10 000–100 000 cells/L group
into two (10 000–50 000 cells/L and 50 000–100 000 cells/L).
This allows for direct comparison with binary classification
models that use a threshold of 50 000 cells/L.
As described in FWC's documentation, sampling intensity

has varied over time depending on the availability of
funding since the monitoring program began in 1954.
Monitoring includes both routine and event‐based sam-
pling. The latter—sampling during red tide blooms in order
to guide management decisions—introduces the potential
for an imbalanced dataset due to bias toward high K. brevis
concentrations. However, FWC has increased its routine
sampling effort since 2000, and we account for the
imbalanced‐data problem in the Experimental Design and
Evaluation Metrics Section.
From the FWC HAB Monitoring Database, we obtained

a dataset of 89 608 red tide in situ samples from January
2000 through May 2020. These samples were spread along
the southwest coast of Florida, with 9054 samples from
Pinellas county, 2840 samples from Hillsborough county,
6999 samples from Manatee county, 30 105 samples from
Sarasota county, 5666 samples from Charlotte county, 16 635
samples from Lee county, 9430 samples from Collier county,
and 8879 samples from Monroe county. Figure 1 shows the
locations of in situ samples that were successfully paired with
MODIS‐Aqua satellite data. Details about the pairing are
described in the Dataset Preparation Section.

ETOPO1 model for water depth. The NOAA's ETOPO1
Global Relief Model (Amante & Eakins, 2009; NOAA Na-
tional Centers for Environmental Information, 2022) pro-
vides an estimate of bedrock height to the nearest meter at
a 1 arc‐minute resolution (approximately 1.9 km). Each pixel
in the MODIS satellite images was paired with the closest
pixel from the ETOPO1 model as a proxy for water depth.
Water depths in the study area range from sea level to 3562
m deep. However, the majority of FWC in situ samples have
been collected in shallow water near the coastline; 90% of
the in situ samples were collected at depths of 22m or less.

Dataset preparation. This section describes dataset prepa-
ration for the training of several ML models. We followed a
process similar to Hill et al. (2020) to extract relevant fea-
tures from the MODIS‐Aqua imagery, including RS re-
flectance, chlorophyll‐a, and others, and the ETOPO1
Model.
Specifically, for each in situ sample, we constructed a

100 km × 100 km grid (101 × 101 pixels) centered on the
sample location. MODIS‐Aqua images from up to 10 days
prior to the in situ sample date were used to fill the pixel
grid by linearly interpolating each image to the grid and then
averaging the gridded data over the 10‐day window. The
usage of level 2 data products means that all pixels con-
taining significant cloud cover or sun glint were excluded
from this analysis. This temporal averaging scheme was

adopted to mitigate missing values in any one satellite image
(e.g., due to cloud cover or noncoverage by the satellite). In
addition, each grid pixel was matched with the nearest value
from the NOAA ETOPO1 model for depth.

From the dataset containing 101 × 101 pixel grids, we
also created a second dataset by extracting a single pixel
(the central pixel) from each grid as well as the associated in
situ sample. Most of the models that we consider utilized
the central pixel only; the 101 × 101 grid of pixels was
only used for comparison with the model from Hill
et al. (2020).

Satellite feature processing

Feature selection. An important step in ML development is
feature selection, in which we select the features most rel-
evant for prediction and discard the others. This step allows
models to focus on the most useful information during
training without getting confused by features that have little
or no predictive value.

Recursive feature elimination (RFE) (Guyon et al., 2002)
was applied to perform feature selection. Recursive feature
elimination estimates feature importance according to some
metric, removes the least important feature, and then re-
cursively repeats the process until only one feature remains.

Integr Environ Assess Manag 2024:1–15 © 2024 SETACwileyonlinelibrary.com/journal/ieam

FIGURE 1 In situ sample locations with valid matching satellite data. This
region forms the study area of this work and the samples shown are those
used in the quantitative evaluation presented. The color of the dots indicates
the in situ samples' cell concentration following Florida Fish and Wildlife
Conservation Commission's categories: Gray is background (<1000 cells/L),
white is very low (between 1000 and 10 000 cells/L), yellow is low (between
10 000 and 100 000 cells/L), orange is medium (between 100 000 and 1 000
000 cells/L), and red is high (>1 000 000 cells/L)

4 Integr Environ Assess Manag 00, 2024—FICK ET AL.
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The metric used in this work to rank features was the Gini
importance of a random forest classifier, using the
RFE implementation provided in scikit‐learn (Pedregosa
et al., 2011). Among the MODIS‐Aqua level 2 ocean color
features, we developed models using the seven top‐ranked
features from the 20 candidate features: nflh, Rrs488, Kd490,
par, Rrs469, chlora, and Rrs443 (Table 2).

Feature processing. Remotely sensed ocean color features
are water depth dependent in optically shallow waters: Re-
flectance received by a remote sensor is influenced by
backscatter and benthic effects in shallow and clear coastal
waters (Abbas et al., 2019; Ha et al., 2014). Visualization of
the aggregated satellite feature values as a function of water
depth illustrates this dependence (Figure 2). The chlora,

Kd490, and nflh values increase at shallower depths, and the
Rrs443, Rrs469, and Rrs488 values decrease at shallower
depths. Chlorophyll‐a feature values are generally higher
with greater variability at lower depths, presumably due to
additional uncertainties introduced by bottom reflection.
Such a spatially heterogeneous distribution poses a chal-
lenge to RS methods since the spectral signature of red tide
pixels may differ across locations.
To account for depth dependence of the satellite fea-

tures, we normalized the values of pixels in each feature
channel based on the integer‐rounded depth provided
by the nearest ETOPO1 pixel. Specifically, we depth‐
normalized the raw color feature values based on the mean
µτfeature and standard deviation σfeature

τ of each discretized
depth level τ:

Integr Environ Assess Manag 2024:1–15 © 2024 SETACDOI: 10.1002/ieam.4908

FIGURE 2 Means and standard deviations of MODIS satellite feature values as a function of ETOPO1 water depth; for visual clarity, standard deviations have
been divided by 5. To compute these statistics, MODIS feature values from the full study period were paired with integer‐rounded depths from the nearest
ETOPO1 pixel

MACHINE LEARNING FOR RED TIDE DETECTION—Integr Environ Assess Manag 00, 2024 5
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μ

σ
=

− τ

τ
normalized feature

raw feature
.feature

feature
(1)

An alternative method of using depth would be to include
depth directly as an input feature to the neural network
model, as was done in Hill et al. (2020). The approach
taken here was chosen because the vast majority of the in
situ training samples exist in shallow water, as noted in the
ETOPO1 Model for Water Depth Section. This makes it
challenging for the model to directly learn the relationship
of depth with the satellite features.

Incorporating historical data with weighted KNNs

Ongoing K. brevis sampling by FWC provides an oppor-
tunity to leverage recent in situ data to improve perform-
ance. In this section, we describe engineering of a new input
feature based on recent in situ observations.
Because FWC red tide data are generally available three

days after sample collection, we can use recent in situ
sample data—from three to 10 days prior to the current
date—to engineer a feature that will potentially improve
the prediction of a pixel's bloom state by providing ad-
ditional spatiotemporal context. We developed a
weighted KNN regression model that weights all available
in situ samples (from three to 10 days prior to the current
date) according to their distance from the target location
(the current pixel to be classified) in both space and time.
This approach encodes our knowledge that recent, nearby
samples should be more highly correlated than spatially
and temporally distant samples. Equation (2) shows how
the distance function is set up to use both spatial and
temporal information, where d(i,j) is the geodesic distance
computed by the method from Karney (2013). For all ex-
periments in this article, β is set to 1.

β( ) = ( ) + × ( − )spDistance i j d i j date date, , ,i j (2)

( ) = ( )d i j geodesic latitude longitude latitude longitude, , , , .i i j j

(3)

In order to facilitate training, we first rescaled the K.
brevis concentration values, following Qin et al. (2017).
Bloom magnitudes are conventionally expressed as
log‐transformed concentrations (from 0 to over 106 cells/L),
and we rescaled the concentration values on [0,1]
(Equation 4).

=Conclog .
conc

conc

log

max log
10

10
(4)

Distances were converted into inverse distances so that
closer neighbors are more heavily weighted (Equation 5).
The KNN weights were computed by dividing each sample's
inverse distance by the sum of inverse distances across
samples (Equation 6). The final KNN feature value is the sum
of the products of the weights and the corresponding log‐
concentration values (Equation 4) across all in situ samples in

the three‐ to 10‐day window (Equation 7). Algorithm 1 de-
tails the full algorithm for the weighted KNN approach.

=
( )

inverseDistance
spDistance i j

1
,

,i (5)

∑
=weight

inverseDistance
inverseDistance

,i
i

i
(6)

∑= ×estimatedConc weight Conclog .i i (7)

Algorithm 1 K‐Nearest Neighbor Regression

Data: Test point i: (latitude lati, longitude loni, datei); Neighbors
j: (latitudes latj, longitudes lonj, dates datej, and K. brevis
concentrations concj of water samples)

Input: Spatiotemporal weighting β

Result: Prediction for K. brevis concentration

1 Find subset of j water samples whose dates are 3–10 days
before the test point i

2 Compute =Conclog j
conc

conc

log

max log
j

j

10

10
for all j

3 Compute spatial distances
= ( )d geodesic lat lon lat lon, , ,i j i i j j, for all j

4 Compute spatiotemporal distances
β= + × ( − )spDistance d date datei j i j i j, , for all j

5 Compute =inverseDistancei j spDistance,
1

i j,
for all j

6 Compute
∑

=weighti j
inverseDistance

inverseDistance,
i j

i j

,

,
for all j

7 Compute ∑= ×estimatedConc weight Conclogi i j j,

8 Return estimatedConci

Neural network architecture and training

We developed neural networks using the seven satellite
features that ranked highest in terms of Gini importance and
the depth feature from the NOAA ETOPO1 Global Relief
Model (Amante & Eakins, 2009; NOAA National Centers for
Environmental Information, 2022), as described in the Fea-
ture Selection Section. In addition, we developed networks
that accept an additional feature derived from recent in situ
data weighted by the KNN algorithm (Incorporating His-
torical Data with Weighted K Nearest Neighbors Section).
These models fuse the information from the RS data with the
known ground truth from the recent spatiotemporal region,
allowing the model to use both data sources simultaneously.
Table 3 shows the full feature set used for neural network
training.

Two different neural network architectures were explored
in this work. The first is a multilayer perceptron that classifies
individual pixels—the “central pixel neural network”—that is,
for each image of 101 × 101 pixels, the model classifies the
central pixel or the pixel closest to the in situ sample. A
figure showing the model architecture is provided in the
Supporting Information.

Integr Environ Assess Manag 2024:1–15 © 2024 SETACwileyonlinelibrary.com/journal/ieam
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This network outputs six values that indicate the network's
prediction that the input pixel falls into one of six classes: 0 to
1000 cells/L, 1000 to 10 000 cells/L, 10 000 to 50 000 cells/L,
50 000 to 100 000 cells/L, 100 000 to 1 000 000 cells/L, and
1 000 000+ cells/L. These classes follow the abundance
classifications used by FWC (2021b), with an additional
threshold at 50 000 cells/L to allow comparison with other
models that use that threshold.
The other model that we considered was a convolutional

neural network (figure provided in the Supporting In-
formation), whose structure closely follows Hill et al. (2020).
Images of 101 × 101 pixels are given to the NASNet‐Mobile
network, which outputs a feature layer of size 1056 × 7 × 7.
Following the procedure in Hill et al. (2020), we extracted
the central 3 × 3 region to obtain a 1056 × 3 × 3 layer, and
then flattened that layer to a set of 9504 features. Those
features were then passed through fully connected layers to
produce the classification output.
This model outputs two values indicating the model's

prediction that the input pixel falls into one of two classes:
0 to 50 000 cells/L or 50 000+ cells/L. These classes follow
the categorization used in Hill et al. (2020).
We experimented with the optional KNN feature in the

convolutional model. This feature was added in the final
layer of the model after the satellite and depth features had
been aggregated by the convolutional layers. The KNN
feature aggregates spatiotemporal information from the
surroundings and is coupled with the convolutional network,
which aggregates contextual information in the satellite
data. Therefore, one of the questions that we explore in the
experiment section is whether the KNN feature can add
information that is not already present in the convolution.

Ablation study

We performed an ablation study to examine the predictive
value of the depth‐normalization procedure (for satellite

features) and the engineered KNN feature, in both the central
pixel model and the convolutional model. Accordingly, we ran
each of these models without the KNN feature or depth
normalization, with the KNN feature only, and with both the
KNN feature and the depth normalization. Each configuration
was trained and tested 20 times (using a different year as the
test set).

Implementation of baseline methods from the literature

We implemented existing methods from the literature
(Table 1) and provide the implementation details below for
reproducibility. Source code is available on Github (https://
github.com/CenterForCoastalSolutions/red-tide-conv). Most
of these existing methods rely on traditional RS products, but
the convolutional neural network in Hill et al. (2020) is the
current state‐of‐the‐art (described in the Neural Network
Architecture and Training Section). The traditional RS prod-
ucts are described below. For any methods that use a wave-
length band not present in the MODIS sensor, we used the
closest available band.
From Amin et al. (2009), we compared against two

methods. The first used the authors' proposed Red Band
Difference (RBD), based on the normalized water‐leaving
radiance feature, nLw. We adopted the authors' suggested
threshold > / /μ /RBD 0.15 W m m sr2 .

= ( ) − ( )RBD nLw nLw678 667 . (8)

The second method from Amin et al. (2009) used the RBD
as well as the K. brevis bloom index (KBBI). We adopted the
authors' suggested thresholds of > / /μ /RBD 0.15W m m sr2

and > ×KBBI RBD0.3 .

=
( ) − ( )

( ) + ( )
KBBI

nLw nLw
nLw nLw

678 667
678 667

. (9)

Cannizzaro et al. (2008) classified K. brevis blooms based
on > /chlorophyll 1.5mg m3 and bbp(550) values less than
the Morel (1988) relationship. Cannizzaro et al. (2008) cal-
culated bbp(550) based on Equation (10) from Carder et al.
(1999), and the Morel (1988) relationship refers to bbp(550)
as computed by Equation (11).

( ) = × ( ) −b R550 2.058 551 0.00182,bp rs (10)

( ) = × × (

+ × ( − × ))

b Chl

Chl

550 0.30 0.002

0.02 0.5 0.25 log .

bp
0.62

morel

(11)

Similarly, Cannizzaro et al. (2009) detected K. brevis
blooms based on > /chlorophyll 1.5mg m3 and ≤( )b 550bp

/0.0045m mg2 .
Al Shehhi et al. (2013) proposed a method based on

nFLH. The authors did not suggest a threshold value for
nFLHthresh, so where necessary, we adopted nFLHthresh= 0.
Lou and Hu (2014) proposed a red tide index RI (Equa-

tion 12), modified from the original red tide index proposed
by Ahn and Shanmugam (2006). We applied the authors'
suggested threshold of >RI 2.8.

Integr Environ Assess Manag 2024:1–15 © 2024 SETACDOI: 10.1002/ieam.4908

TABLE 3 Full feature set used to train neural network models

Abbreviated
feature name Full feature name

nflh Normalized fluorescence line height

Rrs488 Remote sensing reflectance at 488 nm

Kd490 Diffuse attenuation coefficient at 490 nm

par Photosynthetically available radiation

Rrs469 Remote sensing reflectance at 469 nm

chlora Chlorophyll concentration, OCI algorithm

Rrs443 Remote sensing reflectance at 443 nm

depth Bathymetry from the NOAA ETOPO1
model

knn (Optional) Spatiotemporal estimate of K.
brevis concentration from the KNN
algorithm

Abbreviations: KNN, K‐nearest neighbor; OCI, ocean color index.

MACHINE LEARNING FOR RED TIDE DETECTION—Integr Environ Assess Manag 00, 2024 7
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=
( ) − ( )

( ) − ( )
RI

R R
R R

555 443
490 443

.rs rs

rs rs
(12)

Stumpf et al. (2003) is based on chlorophyll anomalies,
defined as the difference in chlorophyll value in a single
image compared to the mean chlorophyll value in the pe-
riod from two months prior to two weeks prior to the image
date. We adopted a chlorophyll anomaly threshold
of >0.5 μg/L as that which corresponds to a K. brevis con-
centration of 50 000 cells/L.
Tomlinson et al. (2009) proposed a spectral shape

method as defined by Equation (13) and the threshold
( ) <SS 490 0.

( ) = ( ) − ( )

− ( ( ) − ( )) ×
−

−

SS nLw nLw

nLw nLw

490 490 443

510 443
490 443
510 443

.

(13)

Soto et al. (2021) and Bernard et al. (2021) proposed a
method applying thresholds across several features. The
method detects K. brevis blooms based on the following
criteria: > / > / /chlorophyll nFLH1.5mg m , 0.01mW cm3 2

μ / <b ratiom sr, and 1bp . The bbp ratio refers to the ratio
of bbp as computed by the Quasi‐Analytical Algorithm from
Lee et al. (2002) divided by bbp using the Morel (1988) re-
lationship from Equation (11).

Experimental design and evaluation metrics

We conducted experiments to test each model's ability to
detect red tide bloom conditions. To set up the datasets,
the data were split into training and test data according to
year, rather than randomly, to prevent data in the training
and test sets from being close in both space and time, which
would potentially enable models to show unrealistically
strong predictive performance. For instance, one test set
may comprise all data from 2020, and the corresponding
training set would comprise all data excluding 2020. As the
basis for evaluating each model's performance, models
were run 20 times using a different year for the test set.
Among the samples in the potential training set, we se-

lected samples in order to balance the set across K. brevis cell
concentrations. We randomly selected 350 samples in each of
the following six cell count categories: 0–1000 cells/L, 1000–
10000 cells/L, 10 000 to 50000 cells/L, 50 000–100 000 cells/L,
100 000 to 1 000 000 cells/L, and 1 000 000+ cells/L. These six
classes follow the categories used in the central pixel model
described in the Neural Network Architecture and Training
Section, and as such serve as the labels for training.
The convolutional neural network model described in the

Neural Network Architecture and Training Section used two
classes: 0–50 000 cells/L and 50 000+ cells/L. To produce la-
bels for this training, we combined the six categories de-
scribed above to fit these two classes. Specifically, the
samples from the 0 to 1000 cells/L category, the 1000 to 10
000 cells/L category, and the 10 000 to 50 000 cells/L category
were combined into the 0 to 50 000 cells/L class, and the

samples from the 50 000 to 100 000 cells/L category, the 100
000 to 1 000 000 cells/L category, and the 1 000 000+ cells/L
category were combined into the 50 000+ cells/L class.

For quantitative evaluation, we used three metrics: clas-
sification accuracy, the F1 score, and Cohen's κ score
(Cohen, 1960). These metrics were computed based upon
individual pixels corresponding to field samples. The clas-
sification accuracy is computed as the number of correct
classifications divided by the total number of classifications:

=
+

+ + +
Accuracy

TP TN
TP TN FP FN

, (14)

where TP is the number of true positives, TN is the number
of true negatives, FP is the number of false negatives, and
FN is the number of false negatives.

We also computed the F1 score and Cohen's κ score.
The F1 score is the harmonic mean of precision and recall
(Equations 15–17). Cohen's κ score relates the observed
classification accuracy po to the hypothetical accuracy pe

achievable by random chance (Equation 18). For instance, if
90% of test samples were from nonbloom conditions, a
model could predict every test sample as a nonbloom and
achieve 90% accuracy by artifact. The κ score adjusts the
score to account for such bias. Note that for all three of
these evaluation metrics, higher scores indicate better per-
formance.

= ×
×

+
F

precision recall
precision recall

1 2 , (15)

=
+

precision
TP

TP FP
, (16)

=
+

recall
TP

TP FN
, (17)

κ =
−

−

p p

p1
.e

e

0 (18)

We also evaluated models using receiver operating
characteristic (ROC) curves, which visualize performance as a
function of the detection threshold (i.e., the minimum
output value of the network required to classify a pixel as
indicative of bloom conditions). For each threshold, the
ROC curve displays the model's false‐positive rate (the
number of nonbloom pixels incorrectly classified as bloom
pixels) and true‐positive rate (the number of correctly clas-
sified bloom pixels). The top left corner of the ROC plot
represents perfect performance (100% true‐positive rate
with 0% false‐positive rate), and a dashed 1:1 line indicates
performance equivalent to guessing (i.e., true‐positive rate
equals false‐positive rate).

RESULTS
To illustrate the proposed model's output in practice, we

present predicted red tide maps over the course of a red
tide bloom event that occurred off the southwest coast of

Integr Environ Assess Manag 2024:1–15 © 2024 SETACwileyonlinelibrary.com/journal/ieam
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Florida in 2006 (Figure 3). The maps visualize the predicted
K. brevis concentration classification at each pixel. For ref-
erence, the maps also display in situ data collected during
the same period.
We conducted an ablation study to compare model ar-

chitectures and specifications using a threshold of 50 000
cells/L for binary bloom and/or nonbloom classification. The
ablation study indicated that the central pixel neural net-
work outperformed the convolutional neural network whose
architecture mirrors the network proposed by Hill et al.
(2020). The central pixel model performed best with the
inclusion of the KNN feature and the depth‐normalization
procedure, and this model achieved a mean accuracy of
0.70, an F1 score of 0.67, and κ coefficient of 0.38 across
replicate runs of the model based on 20 different train/test
splits (Table 4).

Integr Environ Assess Manag 2024:1–15 © 2024 SETACDOI: 10.1002/ieam.4908

FIGURE 3 Example of model output during the 2006 Karenia brevis bloom event off the southwest coast of Florida. Maps visualize the predicted red tide
concentration classification at each pixel with a blue‐to‐yellow color gradient. The dark gray pixels indicate land and light gray pixels indicate missing values
due to persistent cloud cover or sun glint. Imagery was averaged over 10 days, matching the training of the model. Circles indicate in situ samples collected up
to one week prior to the displayed date, and observed concentration values are indicated by color, following Florida Fish and Wildlife Conservation
Commission's concentration categories: Gray is background (<1000 cells/L), white is very low (between 1000 and 10 000 cells/L), yellow is low (between 10 000
and 100 000 cells/L), orange is medium (between 100 000 and 1 000 000 cells/L), and red is high (>1 000 000 cells/L)

TABLE 4 Ablation results: Comparison of models with and without
the KNN feature and depth‐normalized feature processing

Model Accuracy F1 score κ score

Hill et al. (2020) 0.60 (0.04) 0.50 (0.08) 0.19 (0.06)

Hill et al. (2020)+ KNN 0.62 (0.05) 0.53 (0.09) 0.22 (0.09)

Hill et al. (2020)+ KNN+
depth normalization

0.62 (0.05) 0.47 (0.11) 0.20 (0.06)

Central pixel 0.65 (0.03) 0.62 (0.09) 0.29 (0.08)

Central Pixel+ KNN 0.68 (0.04) 0.65 (0.08) 0.34 (0.08)

Central Pixel+ KNN+
Depth Normalization

0.70 (0.02) 0.67 (0.09) 0.38 (0.05)

Note: Performance metrics are expressed as mean (standard deviation) values
across 20 replicate training and/or testing runs for each model.
Abbreviation: KNN, K‐nearest neighbor.

MACHINE LEARNING FOR RED TIDE DETECTION—Integr Environ Assess Manag 00, 2024 9
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Our central pixel model also outperformed existing
methods in the literature (Table 5). The methods of Soto et al.
(2021), Bernard et al. (2021), and Tomlinson et al. (2009)
achieved the next‐highest performance when considering all

three metrics, with mean accuracies of 0.64 and 0.63, mean
F1 scores of 0.61 and 0.65, and mean κ coefficients of 0.26
and 0.26, respectively. ROC curves show the mean perform-
ance of each model (across 20 runs) and indicate dominance
of the central pixel model across all detection thresholds
(Figure 4).

Additionally, we show a confusion matrix of the proposed
method's performance against unseen text pixels in
Figures 5 and 6. These two figures show that the confusion
matrix first normalized by column and then by row. This
allows insight into how the model's predicted labels corre-
spond to true labels, and vice versa.

DISCUSSION
Quantitative comparisons of model performance in-

dicated that our central pixel neural network, including the
KNN feature and depth‐normalized satellite features, offers
substantially improved detection of red tide blooms com-
pared to existing methods (Tables 4 and 5). This work
leveraged valuable, long‐term datasets of in situ sampling of
K. brevis and 20 years of MODIS‐Aqua satellite imagery—
datasets that have required significant and long‐term state
(FWC) and federal agency investment to maintain and cu-
rate. Further, we introduced two main innovations by nor-
malizing satellite features to water depth and engineering a
new KNN feature that makes use of the ongoing availability
of in situ sample data. Importantly, this approach can be
feasibly and efficiently operationalized to support the de-
tection and tracking of red tide along Florida's Gulf Coast

Integr Environ Assess Manag 2024:1–15 © 2024 SETACwileyonlinelibrary.com/journal/ieam

TABLE 5 Performance metrics for the proposed model and existing
models from the literature

Model Accuracy F1 score κ score

Central Pixel+ KNN+
Depth Normalization
(our method)

0.70 (0.02) 0.67 (0.09) 0.38 (0.05)

Amin et al. (2009) RBD+
KBBI

0.65 (0.05) 0.48 (0.09) 0.26 (0.06)

Amin et al. (2009) RBD 0.65 (0.05) 0.48 (0.09) 0.26 (0.06)

Soto et al. (2021),
Bernard et al. (2021)

0.64 (0.03) 0.61 (0.07) 0.26 (0.06)

Tomlinson et al. (2009) 0.63 (0.05) 0.65 (0.08) 0.26 (0.08)

Lou and Hu (2014) 0.62 (0.03) 0.52 (0.08) 0.22 (0.06)

Hill et al. (2020) 0.60 (0.04) 0.50 (0.08) 0.19 (0.06)

Cannizzaro et al. (2008) 0.59 (0.05) 0.45 (0.10) 0.16 (0.08)

Stumpf et al. (2003) 0.56 (0.06) 0.65 (0.08) 0.13 (0.06)

Cannizzaro et al. (2009) 0.55 (0.08) 0.25 (0.09) 0.06 (0.05)

Al Shehhi et al. (2013) 0.49 (0.08) 0.64 (0.09) 0.02 (0.03)

Note: Performance metrics are expressed as mean (standard deviation) values
across 20 replicate training and/or testing runs for each model.
Abbreviations: KNN, K‐nearest neighbor; RBD, Red Band Difference.

FIGURE 4 Receiver operating characteristic (ROC) curves for the proposed model and existing models from the literature. Each curve shows the specified
model's mean ROC curve across 20 replicate training and/or testing runs. Vertical and horizontal axes indicate the true‐positive rate and false‐positive rate,
respectively. KBBI, Karenia brevis bloom index; KNN, K‐nearest neighbor; RBD, Red Band Difference
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and adapted to support the detection of algal blooms in
other coastal areas characterized by heterogeneous water
depths. Further, our rigorous evaluation of model perform-
ance relative to others presented in the literature and cur-
rently in applied in practice establishes a clear and
consistent benchmark against which future studies may
compare their accuracy.

Additional comments on improved accuracy with
baseline methods

Our review of ML‐based red tide detection methods in the
literature revealed that quantitative performance metrics are
rarely reported. One exception is Hill et al. (2020), who re-
ported better performance than we found based on our im-
plementation of the method (Table 5). Hill et al. (2020)
reported that their best‐performing model achieved an ac-
curacy of 0.91, an F1 score of 0.88, and a κ score of 0.81. A
possible explanation for the discrepancy is that these authors
discarded samples with K. brevis cell concentrations between
1 and 50 000 cells/L. All of the samples in their nonbloom class
thus had a labeled concentration of 0 cells/L, and all of the
samples in the bloom class had a labeled concentration >50
000 cells/L. Ignoring concentrations between these two values

makes the problem of detecting red tide easier, but it is not
reflective of realistic conditions. These lower cell counts, dis-
carded by Hill et al. (2020), may represent conditions when
blooms are intensifying or abating—critical time periods from
a detection and management perspective. Additionally, Hill
et al. (2020) did not describe their procedure for splitting the
data into training and test sets. If the splits were determined
randomly, rather than by year (as we have done), the de-
tection problem is artificially made easier, and the model may
perform unrealistically well during testing. Regardless, our
approach provides an objective “apples‐to‐apples” compar-
ison, with substantive improvements realized by our best‐
performing model.
Inclusion of one of our key innovations—the KNN feature—

improved performance of the central pixel model across all
metrics (Table 4). This improvement was also observed in our
implementation of the convolutional model proposed by Hill
et al. (2020). The intent for the KNN feature was to aggregate
information across a broader spatiotemporal context, but one
might expect such context to be built into a convolutional
network (without an in situ feature) due to aggregation
across a large area. The KNN feature nonetheless provided
additional useful information.

Integr Environ Assess Manag 2024:1–15 © 2024 SETACDOI: 10.1002/ieam.4908

FIGURE 5 Confusion matrix normalized by column to show how each predicted cell count concentration class corresponds to the true classes. Values on the upper‐
left to lower‐right diagonal line represent positive predictive values, or precision. Other values represent the false discovery rate associated with each individual class

MACHINE LEARNING FOR RED TIDE DETECTION—Integr Environ Assess Manag 00, 2024 11
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Additionally, using CNN over a 101 × 101 window, as
suggested by Hill et al. (2020), resulted in lower accuracy
and a lower κ coefficient than using the central pixel only
(Table 4). One possible explanation is that using such a large
geographic area to classify each satellite pixel can result in
an oversmoothing effect due to high spatial correlation
across windows.

Scope and limitations of our method

The spatial footprint of red tide blooms is sometimes
patchy, as discussed in Tomlinson et al. (2009). Since we
fused in situ samples with low‐resolution satellite pixels
using KNNs, it is possible that our method might not ad-
equately capture the subtle patterns of spatial and temporal
variations (e.g., patchiness) of a bloom. The issue could be
mitigated by denser in situ samples and satellite pixels with
higher spatial and temporal resolutions. In addition, we fo-
cused on detecting the K. brevis concentration per pixel.
Future work could evaluate the method for distinguishing
red tide blooms from other nontoxic blooms (El‐Habashi
et al., 2016). In particular, work needs to be done to

understand how microalgae may interact with K. brevis
blooms to influence the resulting satellite signal, as data for
such analysis become available. Finally, although ML ap-
proaches are adaptive to complex scenarios when sufficient
amounts of observed data are available for training, a neural
network model is a black box. As expressed in the literature,
there is a growing need for explainability (Abdollahi &
Pradhan, 2021; Kakogeorgiou & Karantzalos, 2021), and in
particular, it would be advantageous to anticipate novel
conditions under which our classifier would fail (Gawlikowski
et al., 2022; Inkawhich et al., 2022).

Application for real‐world red tide detection

The 2006 case study demonstrates the utility of our ap-
proach in detecting and tracking a red tide bloom (Figure 3).
Specifically, the image from 7/22/2006 shows the model
prediction prior to bloom formation and correctly identifies
a lack of bloom conditions (though we note that no in situ
samples were collected during that week). The images from
7/30/2006 and 8/13/2006 show the early stages of bloom
formation. Specifically, in the 7/30/2006 image, the model

Integr Environ Assess Manag 2024:1–15 © 2024 SETACwileyonlinelibrary.com/journal/ieam

FIGURE 6 Confusion matrix normalized by row to show how each true cell count concentration class is predicted into different classes. Values on the upper‐left
to lower‐right diagonal line represent true‐positive rates, or sensitivity. Other values represent the false‐negative rate associated with each individual class
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identified the bloom appearing off the coast of Fort Myers,
Florida. It also indicated the presence of a bloom further
south along the coast. By 8/13/2006, samples from that
southern area observed zero/background K. brevis cell
counts, and the model predicted no K. brevis in that area. As
one moves forward in time, peak bloom conditions become
apparent in the images from 9/21/2006, 10/18/2006, and
11/10/2006, and visually, the model predictions appear to
agree with the in situ data. The obvious advantage of
using the satellite imagery is that it covers a larger spatial
domain than the in situ samples alone. For instance, the
model identified bloom conditions near Tampa Bay in the
9/21/2006 image, prior to in situ samples in that area, and
later samples in the 10/18/2006 and 11/3/2006 images
confirmed the presence of bloom conditions. Finally, the
12/14/2006 image shows the termination of bloom conditions
in Fort Myers and the Tampa Bay regions, at least tempora-
rily, as bloom conditions would reintensify in the spring of
2007. The model does identify small patches of potential
blooms near the Florida Keys. Sampling in the area over the
subsequent weeks would confirm bloom conditions.
Taken together, this 2006 case study demonstrates the

utility of our approach in capturing the spatial and temporal
evolution of a red tide bloom along Florida's heterogeneous
and shallow coast. Indeed, the model was able to accurately
detect the early appearance of the bloom at the surface, its
distribution during peak bloom conditions, and its abate-
ment in December. Access to such reliable, near real‐time
information about where blooms are located may accelerate
our understanding of blooms' physical, biological, and
chemical drivers and their effects on wildlife, water quality,
economic activity, and public health. In addition, highly re-
solved maps may support targeted public health advisories
and proactive management and mitigation measures.
The confusion matrices shown in Figures 5 and 6 have

implications for the usefulness of this model in a manage-
ment and response context. When faced with examples that
are high concentration (full‐blown bloom conditions) or very
low concentration (nonbloom conditions), the model's pre-
dictions are very accurate. in intermediate bloom levels,
confidence in the model's predictions should be lower
(i.e., differentiating the 1000–10 000 cells/L group from the
10 000–50 000 cells/L group).
Future work can address why the model struggles to re-

solve the intermediate bloom levels. A possible hypothesis
as to why these examples are so challenging is that they may
reside on the margins of established blooms, and so the
satellite data are aggregating information from either inside
or outside of the bloom. Another possibility is that these
intermediate pixels reside in blooms that are either
emerging or dying off and the satellite information may not
be capturing current conditions accurately.

CONCLUSION
We developed a novel ML‐based method for detecting

red tide (K. brevis) blooms off the Florida Gulf Coast at a
1‐km spatial resolution. The method offers improved

performance over state‐of‐the‐art red tide detection
methods and consists of a neural network that leverages
seven depth‐normalized ocean color features (MODIS)
as well as an engineered feature based on recent in
situ sample data aggregated by a straightforward KNN
weighting scheme. The depth‐normalization procedure
adjusted for backscatter and reflectance effects in shallow
coastal waters, and the KNN feature encoded additional
spatiotemporal context not provided by the satellite data.
This model demonstrates potential for advancing scientific
understanding of bloom dynamics and drivers, enhancing
red tide management and mitigation efforts in near‐real
time, and adaptability for application to other types of
algal blooms.
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SUPPORTING INFORMATION
Graphic descriptions of the two neural network archi-

tectures that were used in the work.
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