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A B S T R A C T

Historical wetland hydrology data are instrumental to support the design of wetland management and re-
storation strategies but are rarely available. In this study, we tested the capabilities and limitations of a simple
methodological framework based on publicly available MODIS Land Reflectance Products to estimate wetland
soil surface saturation and inundation spatiotemporal dynamics. Using supervised learning and high-resolution
groundwater and surface water elevation data, the framework searches for spectral algorithms, referred to as the
wet/dry wetland status classifier (WSC) and the continuous wetland dynamics identifier (WDI), that best predict
upper soil layer wetness status in the study wetland. We used Google Earth Engine (GEE) for fast access and
processing of the full range of MODIS data. The capabilities of GEE also enabled us to readily conduct a com-
parative assessment of the MODIS 8-day composite and daily collections and test various pixel-level quality
filters to select reliable data at the highest possible temporal resolution. We tested the framework on the in-
ternationally-recognized Ramsar site Palo Verde National Park wetland in Costa Rica, and we obtained good
results (overall prediction accuracy of 86.6% and kappa coefficient of 0.7 for the WSC; r2 of 0.71 for the WDI).
High-resolution water level data allowed us to assess the challenges, promises and limitations of using MODIS
products for wetland hydrology applications. We then applied the WSC and WDI to map the 2000-2016 sub-
weekly wetland hydroperiod at 500m resolution, achieving a temporal resolution rarely matched in remote
sensing for wetland studies. The analysis of the end-products, combined with the field water elevation data,
provided new insights into the drivers controlling the spatiotemporal dynamics of hydroperiod within the Palo
Verde wetland and did not reveal any significant temporal trends. The WSC and WDI framework developed here
can be useful for reconstructing long-term hydroperiod variability and uncovering its drivers for other wetland
systems globally.

1. Introduction

The extent and ecological integrity of wetland ecosystems are facing
a rapid global decline caused by water management, pollution, invasive
plant encroachment, fragmentation and conversion to alternative land
uses (Dixon et al., 2016; Junk et al., 2013). This continuing loss and
degradation impairs the numerous ecosystem services that wetlands
provide at regional and global scales, including habitat and biodiversity
support, carbon sequestration and climate mitigation, water treatment
and flood protection, and cultural services (Mitsch and Gosselink, 2007;
Zedler and Kercher, 2005). Costanza et al. (2014) estimated that the
global annual decrease in wetland area led to global net ecosystem
service losses of 9.9 trillion 2007 US dollars per year. Exacerbating
these losses are the challenges linked to the restoration and

management of wetland ecosystems due to an often-incomplete un-
derstanding of long-term wetland degradation drivers and trajectories
(White and Kaplan, 2017).

The primary determinant of wetland ecological composition and
ecosystem services is wetland hydrology (Mitsch and Gosselink, 2007).
Hydrological inputs and outputs influence soil biochemistry, and
characteristics of flooding such as duration, spatial extent, and timing
of high and low waters drive plants' germination and growth and sup-
port the wildlife that depends on this habitat. Hence, by changing
physicochemical properties, small changes in wetland hydroperiod –
defined here as “the periodic or regular occurrence of flooding and/or
saturated soil condition” (Marble, 1992) – can result in significant
biotic changes (Boers et al., 2008; Campbell et al., 2016; Mitsch et al.,
2010; Osland et al., 2011; Richter et al., 1996; Zedler and Kercher,
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2004).
Given its importance, quantifying long-term spatiotemporal hydro-

period variability and changes are fundamentally important for many
aspects of wetland management and restoration (Acharya et al., 2017).
Such data allow to improve the understanding of wetland functioning,
to design and calibrate hydrological models, and to investigate the
causes of wetland changes. However, field monitoring networks of large
wetlands that provide such data are rare because of the difficulty and
prohibitive costs associated with large-scale monitoring of these ex-
tensive areas, which are often remote and difficult to access (McCarthy
et al., 2001; Spiers et al., 1999).

Satellite remote sensing presents appealing opportunities to over-
come this issue of data scarcity for studying wetland spatiotemporal
hydrodynamics (Davidson and Finlayson, 2007; Rebelo et al., 2018;
Rosenqvist et al., 2007). Table 1 summarizes the key studies that have
leveraged remotely-sensed database for that purpose. Passive or active
(Synthetic Aperture Radar, SAR) microwave remote sensing data can
detect inland surface water, are sensitive to soil moisture, and have
canopy penetration capabilities while being able to “see” through
clouds, making them suitable for wetland monitoring (Henderson &
Lewis, 2008; Kasischke et al., 1997; Rosenqvist et al., 2007;
Tsyganskaya et al., 2018). For these reasons, these data have been
broadly used for mapping wetland inundation and studying wetland
hydrology at global (Aires et al., 2017; Papa et al., 2010) and local
scales (e.g., Brisco et al., 2017; Hess, 2003; Jaramillo et al., 2018; Kim
et al., 2017; Lee et al., 2015; Wilusz et al., 2017; Yuan et al., 2017; Zhao
et al., 2014). However, the limitations of radar data lie in the lack of
regular and long-term temporal coverage. Additionally, these data can
be difficult to access, proces, and interpret (Tsyganskaya et al., 2018).
These technical difficulties hinder their routine integration in studies
supporting wetland management and restoration.

Multi-temporal and multi-spectral optical remote sensing databases
such as the publicly available Landsat products (https://landsat.gsfc.
nasa.gov) and the Moderate Resolution Imaging Spectroradiometer
(MODIS) Land Data (Justice and Townshend, 2002) offer long-term
databases that are easier to access and process. Inland surface water
detection with optical remote sensing is relativley simple due to the
strong absorbance of the near-infrared (NIR) spectral region, while al-
most all other land surface types have a high reflectance. A growing
number of products of regional to global water bodies at high spatial
and/or temporal resolution have been generated using water detection
algorithms that build on that property. Landsat imagery have been re-
cently used to produce global maps of permanent and temporary water
bodies (Yamazaki et al., 2015) and to produce datasets documenting
long-term changes of surface water location and seasonality at a 30-m
resolution globally (Pekel et al., 2016) and regionally (Tulbure et al.,
2016). Imagery from MODIS has also been used to create a global map
of surface water at 250 m resolution (Carroll et al., 2009) and to derive
near-real-time global flood mapping at approximately 250 m resolution
(https://floodmap.modaps.eosdis.nasa.gov). These remarkable regional
to global products offer valuable information to locate open water
bodies, track their spatiotemporal variability, and monitor floods.
However, wetlands are often covered by floating or emergent vegeta-
tion, or populated by trees. As a result, vegetation interferes with the
signal reflected by water, and wetland hydric status cannot be reliably
detected by algorithms developed for open water detection purposes
(Rebelo et al., 2018). Although the “one algorithm for all” cannot be
reliably used to track the spatiotemporal variability of vegetated wet-
lands, several studies have successfully used optical remote sensing to
generate information about different aspects of wetland hydrology on a
more localized scale.

We identified three standing weaknesses in wetland remote sensing
studies. The first is that few studies have proposed a systematic pro-
cedure for wetland status identifier exploring a broad range of spectral
indices. Nonetheless, a large array of multispectral algorithms have
been documented for wetland detection (Benger, 2007; Collins et al.,

2014; Domenikiotis et al., 2003; Huang et al., 2014; Landmann et al.,
2002; Lee et al., 2007; Li et al., 2015; Lunetta et al., 2006; McCarthy
et al., 2001; McFeeters, 1996; Møller-Jensen and Yankson, 1994;
Murray-Hudson et al., 2014; Ordoyne and Friedl, 2008; Xiao et al.,
2005a; Xu, 2006; Zhang et al., 2014; Zhou et al., 2016). This multi-
plicity of algorithms reflects the bio-physical diversity characteristic of
wetland ecosystems and suggests that appropriate spectral band(s) and
their transformation are dependent on the specificities of each wetland
system.

The second weakness is that most wetland studies have used
training and validation datasets generated from independent aerial or
satellite imagery, but few have contrasted results with high resolution
in situ data for the scrutiny of the sensitivity and limitations of the
remotely sensed diagnostic.

The third is that wetland studies often fail to capture the long-term
and rapidly changing processes or abrupt events such as flash floods
(Xiao et al., 2004). Although Landsat has been successfully used in
numerous instances to scrutinize wetland extent hydrodynamics given
its long-term coverage (1984 to present) and fine spatial resolution
(30 m) (Gómez-Rodríguez et al., 2010; Halabisky et al., 2016; Huang
et al., 2014; Huang et al., 2011; Jones, 2015; Niemuth et al., 2010), its
lower revisit frequency impedes the production of a cloud-free dataset
of sufficient temporal resolution to capture sub-seasonal dynamics in
often-overcast area (Alonso et al., 2016). The daily resolution of the
MODIS imagery makes it a particularly good candidate and has been
proven well suited for wetland hydrodynamics studies (Feng et al.,
2012; Ordoyne and Friedl, 2008) in spite of its coarser spatial resolution
(250 m to 1 km). However, most Landsat and MODIS-based studies
have looked at temporal changes based on a limited set of “before-after”
images, or satellites products at weekly, 16-day, or coarser time re-
solution (Chandrasekar et al., 2010; Gómez-Rodríguez et al., 2010;
Halabisky et al., 2016; Li et al., 2015; Niemuth et al., 2010; Ordoyne
and Friedl, 2008). The widespread use of a subset of these databases has
been persisting due to the effort required to access and process the
multi-temporal archive. Nowadays, powerful computing platforms such
as the cloud-based Google Earth Engine (GEE, Gorelick et al., 2017)
allow overcoming this barrier by facilitating access to the full depth of
optical remote sensing archive and allow for rapid execution of geos-
patial analyses over the full range of MODIS images. A growing number
of studies have leveraged such a platform to untap this spatiotemporal
information mine (Alonso et al., 2016; Huang et al., 2017; Midekisa
et al., 2017), but the applications for wetland hydrology studies remain
scarce.

To address these weaknesses, the objectives of the work were:

(i) to propose and test a cost-effective methodological framework for
a site-specific wetland surface status identifier combining the full
range of MODIS imagery and high resolution and precision water
elevation data;

(ii) to use the framework to reconstruct spatially-explicit hydroperiod
history at a high temporal frequency;

(iii) to identify mechanisms underlying the observed variability in
long-term wetland hydroperiod.

Our methodological framework involves a classification tree and a
regression analysis with an extended list of MODIS spectral indices as
input data, and high resolution surface and groundwater elevation data
as predictors. It searches for the algorithms that perform best in iden-
tifying (i) the upper soil layer wet/dry status, and (ii) the upper soil
layer hydric status variability. We referred to the obtained algorithms
as the wet/dry wetland status classifier (WSC) and the continuous
wetness dynamics identifier (WDI), respectively. Our study site was the
8586 ha Palo Verde National Park (Palo Verde) wetland complex, lo-
cated in the dry tropics of Costa Rica. Over the past 30 years, the we-
tland's functions have been altered with a severe vegetation shift.
Critical to these ecological changes are expected (but undocumented)
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changes in the magnitude, timing, and spatial extent of wetland in-
undation.

2. Study site

Palo Verde National Park wetland in the dry tropics of Costa Rica
(Fig. 1) is an internationally recognized Ramsar Convention site that
provides an ideal testbed for our study because it is a seasonal wetland
with high intra- and interannual hydrological variability, and it con-
tains a spatially-distributed hydrological monitoring network that al-
lows testing the sensitivity of the method to soil wetness and depth of
ponded water. Climate in Palo Verde is characterized by distinct wet
and dry seasons (May to November and December to April respec-
tively), and the region is influenced by the El Niño Southern Oscillation
(Waylen and Laporte, 1999; Waylen and Harrison, 2005), which leads
to strong interannual variations in rainfall; annual rainfall in the Palo
Verde averages around 1325 mm, with a standard deviation of 471 mm
(www.ots.ac.cr/meteoro/, 2016). The Palo Verde's wetland soils are
vertisols, with high clay content exceeding 55% in the first meter depth
(Stipo, 2015).

Water of the Palo Verde wetland is predominantly fresh and dic-
tated by seasonal dynamics. Standing water typically starts accumu-
lating at the beginning of the rainy season and reaches depths> 1 m
locally, and then slowly draws down during the dry season. However,
the wetland's hydrologic regime is spatially variable due to its uneven
topography and adjacency to natural and managed water sources; it is
located between the Tempisque and Bebedero tidal rivers, a vast

irrigated agricultural district, and a tropical dry forest (Fig. 1), all of
which likely contribute water to the system and influence its hydro-
period.

In spite of its RAMSAR status, the wetland is witnessing the en-
croachment of cattail (Typha domingensis), Palo Verde trees (Parkinsonia
aculeata), and zarza-bush (Mimosa pigra), and the subsequent loss of
biodiversity and open water bodies needed by waterfowl (Sasa et al.,
2015; Trama et al., 2009). Palo Verde is in the outlet of the Tempisque
watershed (insert in Fig. 1). The watershed has been significantly
transformed since the late 1970s with the implementation of an inter-
basin water transfer and damming project designed to support hydro-
power generation, agricultural irrigation, and tourism development
(Edelman, 1987; Jiménez et al., 2001). The downstream location of the
wetland makes it vulnerable to these changes, and it is hypothesized
that the wetland disturbance today is a consequence. However, there is
little understanding of the long-term drivers and mechanisms under-
lying these wetland changes, which hampers effective management and
recovery (Convertino et al., 2016; Jiménez et al., 2001; Murcia et al.,
2016).

The Palo Verde wetland is divided into seven units (namely Palo
Verde, Chamorro, Piedra Blanca, Varillal, Poza Verde, Bocana and
Nicaragua) defined in the Tempisque GIS database procured by the Palo
Verde Biological Station, which is managed by the Organization for
Tropical Studies (OTS, http://www.ots.ac.cr). Hereafter, we refer to
these zones as "sub-wetlands" (Fig. 1). These zones are typically em-
bedded in a natural land depression and filled with water during the
rainy season. The sub-wetlands merge into a single body as water

Fig. 1. Palo Verde National Park and wetland and locations of the field monitoring stations. The frame box on the upper left localize the PVNP in the context of the
Tempisque watershed (black boundaries).
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accumulates (Dr. E. González, previous Director of OTS-Palo Verde,
pers. comm.).

3. Dataset

3.1. Field-measured water elevation

We installed six shallow (2 to 3 m) groundwater elevation (GWE)
monitoring wells (Fig. 1) with self-contained pressure transducers
(Solinst Leveloggers, Solinst Canada Ltd.) to record water elevation
every 15 min from May 2013 to April 2016. For characterizing hy-
droperiod, we preferred GWE wells over surface water elevation (SWE).
Indeed, the groundwater elevation is informative of soil surface wetness
since shallow water tables cause the saturation of the upper soil layer
through capillarity fringe. However, the first year of data had revealed
occurrence of disconnects between groundwater and surface water
bodies, so GWE data were insufficient to capture the surface dynamics
fully. Therefore, we complemented five of the six GWE wells with co-
located surface water elevation (SWE) monitoring wells in May 2014
and April 2015 (Table 1). The SWE wells were instrumented with

identical pressure transducer probes or with self-contained canal stage
recorders (Schumann and Muñoz-Carpena, 2002). In this paper, the
GWE monitoring wells are given an ID starting with PVWL##, and the
SWE monitoring wells are given an ID starting with PVCA##. We refer
to the paired GWE-SWE wells as “monitoring stations” numbered be-
tween 1 and 6 (Table 1). No SWE monitoring well was co-located with
the GWE well PVWL01 because there was a SWE well already operating
at a nearby location (PVCA01, Fig. 1). We also installed a river stage
monitoring station in the Tempisque river. We installed the a mon-
itoring station (monitoring station 2) 100 m inland from that river
station to measure the influence of the river on the wetland GWE and
SWE (Fig. 1). The locations of the other monitoring stations were
chosen to provide relatively even spatial coverage and repurpose an
abandoned network of GWE observation wells (PVWL01 and PVWL03
to PVWL06). The locations of these monitoring stations were close to
footpaths or service roads, which enabled equipment access and data
retrieval. The remote southern portion of the wetland (Nicaragua sub-
wetland) was not instrumented in this phase of the project because it
was not readily accessible. We used atmospheric pressure data from a
barometric pressure sensor (Barologger, Solinst Canada Ltd.) co-located

Fig. 2. Methodological flowchart.
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at the Palo Verde weather station (Fig. 1) to perform barometric com-
pensation of the water level data. Elevation of all repurposed wells
except PVWL05 was known from a previous study (JICA, 2002). We
surveyed the new wells using the closest repurposed well as vertical
datum reference. The elevation of PVWL05 and PVCA09 was estimated
as the station was too far from any benchmarks to perform a topo-
graphic survey with the material at our disposition. Rainfall data from
the Palo Verde weather station were obtained from the OTS online
database (OTS, 2016).

3.2. MODIS surface reflectance data

We used MOD09, the 500 m resolution MODIS Surface Reflectance
Product holding images corrected for the effects of atmospheric gases,
aerosols, and thin cirrus clouds (Vermote et al., 2009). We chose this
product because it is freely available, has a sub-daily temporal resolu-
tion, and enables water and land cover monitoring through its re-
cording of visible (VIS), near-infrared (NIR), and short wave infrared
(SWIR) regions of the electromagnetic spectrum.

MODIS products are recorded by twin sensors aboard the satellites
Terra (launched on 12/18/1999 and programmed for a morning over-
pass time in the Northern hemisphere), and Aqua (launched on the 05/
04/2002 and programmed for an afternoon overpass time). The MOD09
product is released in separate datasets for Terra (MOD09) and Aqua
(MYD09). In this manuscript, we used the name MCD09 when dis-
cussing the combined datasets from Terra and Aqua instruments. We
assessed both MCD09 daily and 8-day composite collections (MCD09GA
and MCD09A1, respectively). Each pixel in MCD09A1 is made of the
best observation within an 8-day period.

We accessed and processed MODIS images with the Google Earth
Engine platform.

4. Methods

4.1. Framework for wetland status detection

The methodological flowchart is in Fig. 2. Central to the framework
are the wet/dry wetland status classifier (WSC) and the continuous wetness
dynamic identifier (WDI): using our field-measured water level data as
training variable, we first used supervised learning with a binary clas-
sification tree to search for the combination of candidate SIs that best
predicted the wet (upper soil layer is saturated or flooded) or dry
(upper soil layer is not saturated) status of a pixel. The resulting spec-
tral algorithm is what we called the WSC. As a complementary ap-
proach to the WSC, we assessed whether the time series of any candi-
date SI could be indicative of the variability of the wetness status, i.e.,
of the soil moisture content and the height of standing water. The re-
sulting spectral index is what we called the WDI. The framework is
detailed in the following sections.

4.1.1. Pixel-based data quality assessment
Data quality assessment at the pixel level is essential for the suc-

cessful application of MODIS products (NASA LP DAAC, 2014; Vermote
et al., 2009). We first verified the quality of each band at the pixel level
from the reflectance band quality layer StateQA included with the
MOD09 product. Secondly, we tested an alternative, less strict filter for
removing thick clouds by thresholding the blue band at 0.1 as per
Sakamoto et al. (2005). We also tested the effect of excluding pixels
with sensor zenith angles> 32.25 degrees to account for possible
neighbor effects (Sakamoto et al., 2005). In total, we tested nine com-
binations of alternative filtering criteria (Table 3). We selected the fil-
tering criteria that secured an acceptable elimination of contaminated
pixels while maximizing temporal coverage. We evaluated the filter
effectiveness with a visual evaluation of the compactness of the data,
and of images before and after the application of the filters.

4.1.2. Candidate spectral indices
We considered the reflectance in the seven MCD09 bands that fall in

the visible, NIR, and SWIR spectral regions (bands 1 to 7, Table 4), as
well as combinations of these bands, reported in the literature as ef-
fective measures for open water or wetland detection. These combi-
nations include variations of a transformed spectral ratio, the normal-
ized difference index (NDI, Eq. (1))

= − +NDI (band i band j)/(band i band j) (1)

where the regions of the electromagnetic spectrum measured in bands i
and j depend on the application and case study. The MODIS band
numbers that we used for the spectral indices (SI) calculation are spe-
cified in the SI subscripts (Table 4). We proposed a set of NDIs, building
from the two distinct Normalized Difference Water Index (NDWI)
equations proposed by McFeeters (1996) and Gao (1996). McFeeters's
NDWI was proposed for open water bodies detection and combines the
green and NIR bands for Ri and Rj in Eq. (1) respectively, which cor-
responds to NDI42 following our nomenclature. Gao's (1996) proposed
a NDWI for monitoring liquid water content in vegetation canopies and
combined NIR and SWIR bands in Eq. (1), which corresponds to NDI25.
We tested variations of these two indices by interchanging the NIR and
SWIR bands with the three MODIS bands falling in the SWIR range
(bands 5 to 7). Testing the sensitivity of these three bands was to ac-
count for the property that SWIR can increase contrast between water
and other land cover features (Xu, 2006), and that SWIR wavelength
interval impacts the NDI sensitivity to other land cover classes in the
case of mixed pixels (Ji et al. 2009). Using identical band combinations
as for the ones tested for the NDIs, we also defined a set of spectral band
ratios (BR) as in Eq. (2)

=BR R
Rij

i

j (2)

Some studies have shown such SI to perform well (Benger 2007;
Collins et al. 2014; Johnston and Barson 1993; Ozesmi and Bauer
2002). We also considered the common vegetation indices NDVI, EVI,
soil adjusted vegetation index (SAVI) (Huete 1988), and transformed
vegetation index (TVI) as vegetation indices have proven useful for
distinguishing water from dry land (McCarthy et al. 2001; Ozesmi and
Bauer 2002), and the three Tasseled Cap coefficients (Kauth and
Thomas, 1976) that were shown to successfully indicate hydric status in
some wetlands (Ordoyne and Friedl 2008). Finally, we also used the so-
called “difference in value in EVI and NDWI index” (DVEL), that has
been successfully used to detect water in systems where vegetation and
water features are mixed, such as estuarine wetlands (Yan et al. 2010)
and rice paddy fields (Xiao et al. 2005a). In total, we evaluated 45 SIs
(Supplementary Material A – Table A1).

4.1.3. Paired field measurements and MODIS pixels
We paired field-measured water elevation data from each mon-

itoring station with the spectral reflectance values and derived spectral
indices extracted from the six MODIS pixels covering their locations
(Fig. 3). While the footprint of three pixels was fully encompassed
within the wetland, the other three had a minor portion that was not, as
reported in Table 2 (Pixel cover) and in Supplementary Material A Figs.
A2 to A9. In the case of the monitoring wells PVWL01 and PVCA01, we
selected adjacent pixels since the area they covered was more re-
presentative of the ground conditions prevailing at the field station
(Table 2).

4.1.4. Wetland status classifier (WSC)
4.1.4.1. Training data. We coded the water elevation data as binary
values for wet (1) and dry (0) wetland upper soil layer wetness status.
We coded wet when the groundwater depth was<0.2 m (i.e., the
water was within 0.2 m from the soil surface). We imposed this below-
surface threshold value to account for the capillary fringe that saturates
the soil above the groundwater table.
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4.1.4.2. Classification tree. We trained a classification tree (Breiman
et al. 1984) to search for the WSC that best discriminated between the
wet and dry status of the wetland using all the candidate SIs as
predictors, and the binary-coded field-measured water elevation data
as training data. We executed the classification tree with the fitctree
function (The Mathwork Inc., 2018). In a classification tree, each node
holds conditional tests applied to the input variables and splits into
branches representing the outcome of the tests. The terminal node holds
the class labels (wet or dry) under which the input variables – referred
to as leaves – are classified (Breiman et al. 1984). To avoid overfitting
(i.e. a deep, multi-level tree that has a high prediction accuracy with the
training variables but fails when predicting with independent inputs),
we controlled the tree depth by imposing a minimum number of leaves
per node. We determined that number by testing the prediction
performance for an incrementally increasing imposed minimum
number of leaves. We selected the highest number that did not
involve a significant decrease in performance. For robustness, we
assessed each iteration by taking the averaged performance of a
series of 10-fold cross-validations consisting of partitioning the
training data into ten subsets, nine being used as the training sets and
one as the testing set in a recursive manner (Matlab, Statistics and
Machine Learning Toolbox. The Mathwork Inc., 2018).

We used water elevation time series data from the monitoring sta-
tion 1 as a training dataset because surface and groundwater elevations

at this site were tightly coupled and thus served as a reliable indicator
for wetland surface wetness status.

4.1.4.3. Assessment of the WSC. We tested the robustness of the
resulting classification tree (that is, the WSC) by evaluating its
classification success rate with the field data measured at stations 2
to 6 within a confusion matrix (Yuan et al. 2017). We used the overall
and individual station prediction accuracy percentages as well as
Cohen's kappa coefficient that considers random chance. An
important aspect that our study took into consideration is that the
wetness status diagnosed by the three types of sensors used in this study
(MODIS, groundwater elevation, and surface water elevation sensors)
can differ depending on the source of water controlling the upper soil
layer wetness status, as depicted in Fig. 4. For example, the upper soil
layer can be saturated due to the shallow water table capillarity fringe
effect that saturates the soil above. In such a case, it should be
diagnosed wet by the MODIS sensor, although GWE measures the
water elevation below the ground surface (Fig. 4B). A diagnostic
mismatch can also occur between these two sensors due to the
temporally-lagged response between the groundwater table drawing
down and the drying of the soil surface. To overcome the uncertain
diagnostic made with GWE data due to these phenomena, we assumed
that the wetland was dry when the groundwater depth was>1.5 m,
and wet when it was< 0.2 m with respect to ground surface elevation.
Because we do not know the exact height of the capillarity fringe, we
excluded data measured at intermediate depths (0.2 to 1.5 m) during
the WSC training. We considered the surface wet regardless of the
groundwater level when the surface water elevation monitoring wells
recorded standing water (Fig. 4D & E). We did not include points for
which the dry or wet upper soil layer hydric status could not be
ascertained by the field data in the calculation of the prediction
accuracy and kappa coefficients.

4.1.5. Wetland continuous wetness dynamics identifier (WDI)
Using Pearson's correlation coefficient, we first selected the spectral

index most strongly correlated with groundwater elevation at station 01
(PVWL01). To support a visual evaluation of the index's ability to
capture wetness status dynamics, we transformed the final spectral
index and water elevation to a common scale using unity-based nor-
malization as in Eqn (3):

=
−

−

X X X
X Xnorm

0.01

0.99 0.01 (3)

where X is the variable to normalize and X0.01 and X0.99 are the 1st and
99th percentiles to exclude any extreme values not detected with the
pixel-based filtering procedure.

4.2. Reconstruction of hydroperiod history

We applied the selected pixel-level quality filter and the wetland
WSC and WDI to all the pixels covering the Palo Verde wetland and the
ensemble of images in the MODIS imagery. Then, we generated a suite

Fig. 3. One MODIS image clipped with Palo Verde wetland boundaries, and
location of water level field monitoring stations (red dots) and pixels used for SI
calculation (colored in blue). The numbers within the white boxes indicate the
number of pixels within the corresponding sub-wetland unit. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 2
Ancillary information about the field monitoring stations and the corresponding MODIS pixels.

Field monitoring station no Latitude (WGS84) Longitude (WGS84) Groundwater elevation (GWE) Surface water elevation (SWE) Pixel cover (%)

ID Date start (MM/DD/YY) ID Date start (MM/DD/YY)

1 10.345 −85.340 PVWL01 05/14/13 PVCA01a 05/01/13 100
2 10.326 −85.340 PVWL02 05/13/13 PVCA11 04/25/15 84
3 10.343 −85.366 PVWL03 05/02/13 PVCA07 05/01/14 88
4 10.378 −85.376 PVWL04 05/02/13 PVCA08 05/02/14 100
5 10.402 −85.344 PVWL05 05/02/13 PVCA09 05/03/14 100
6 10.348 −85.275 PVWL06 05/02/13 PVCA10 05/04/14 93

a GWE and SWE wells are 700 m apart. Geographic coordinates of the SWE well: (−85.346, 10.342).
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of MODIS-derived products in the Google Earth Engine (Gorelick et al.
2017) and Matlab (The Mathwork Inc, 2018) to support visualization
and analysis of wetland hydroperiod spatiotemporal variability and
history. These products include (i) time-lapse videos from April 2013 to
March 2015 – two years that witnessed above and below average total
annual rainfall – of the MODIS imagery processed with the WSC and
WDI; (ii) for each month of the year, maps representing the interannual
averages and standard deviations of the frequency at which the pixels
were detected wet by the WSC (i.e., the ratio between the number of
images in which it was detected wet and the total number of images for
that month), and the interannual monthly averages and standard de-
viations of the WDI; (iii) sub-weekly and monthly-averaged time series
of the percentage area of each sub-wetland unit detected wet with the
WSC, and of the average and standard deviation of the WDI. Before
generating these products, we removed the images when>10% of the
pixels within the Palo Verde wetland area were filtered out by the pixel-
level quality filter.

5. Results

5.1. Framework for wetland wetness status detection

5.1.1. Field-measured water elevation time series
Field-measured water elevation time series are displayed in Fig. 5.

Detailed analysis is provided in Supplementary Material B. The data
showed occurrences when surface water decouples from the shallow
groundwater table (indicated as GWE-SWE disconnect in Fig. 5). The
prolonged period from May 2013 to January 2014 during which the
groundwater elevation at PVWL02 remains below the ground level
strongly suggests another case of sustained disconnect between
groundwater and surface water. When there is such disconnect, the
upper soil layer wetness diagnostic made by GWE sensors is different
than by SWE and satellite sensors (Fig. 4 D). This diagnostic mismatch
had to be taken into consideration when training and assessing the
WSC.

5.1.2. Pixel-based quality filters and assessment of the MODIS products
Figs. 6, 7 and Figs. A11, A12 and A13 in Supplementary Material A

are different representations of the values of the spectral indices BR26

calculated with the two products MOD09GA and MOD09A1 after the
application of the quality filters (Table 3). They reveal that blue band

thresholding (filter 4) efficiently filtered out the noise from the signal
while eliminating less data than the filters that included MODIS quality
flags. In other words, using the single blue band thresholding filter 4
maximizes the data frequency and minimizes the occurrence of long
data gaps (Fig. 8).

Fig. 7 shows the effect of different filters on the total number of
images. This figure also tests whether the filtered data remain confined
within the boundary of the dataset resulting from the most constraining
filter 9. Our filter selection is supported by the fact that most of the
points of the datasets filtered with filter 4 falls within that envelope.
Although adding the sensor zenith angle constraint (filter 6) slightly
reduces the apparent noise in the data (Supplementary Material A –
Figs. A11 and A12), we considered this improvement to be nullified by
the associated decrease in data frequency and temporal continuity.

Figs. 6 and 7 also show that the MYD09 dataset (from Aqua satellite)
consistently exhibited higher unstructured variability for the study area
(see also Supplementary Material A – Figs. A11, A12). This is likely
caused by remnant small clouds or haze undetected by the filters since
the overpass time of the Aqua satellite is during the afternoon, when
convective atmospheric storms prevail. Consequently, we excluded the
MYD09 dataset from the analysis. After the screening procedure was
applied, the MOD09GA daily dataset closely matched the 8-day com-
posite MOD09A1 (Fig. 6). Given these outputs, all subsequent analyses
were performed using the MOD09GA product screened with filter 4.

5.1.3. Wetland wet/dry status classifier
For the Palo Verde wetland, a classification tree with a single split

had equivalent or higher prediction accuracy than a tree with multiple
branches. The WSC for Palo Verde wetland was BR26, the ratio between
band 6 (SWIR, 1628–1652 μm) and band 2 (NIR, 841–876 μm), with a
threshold value of 1.66. In other words, the WSC for Palo Verde clas-
sifies as "wet" pixels with BR26 values higher or equal to 1.66.

The water elevation monitored by the field stations color-coded in
blue or yellow for wet or dry classification by the WSC is plotted in
Fig. 9 and shows good agreement between measured and predicted
wetness status. The prediction accuracy and Cohen's kappa coefficients
for the training dataset were 91.3% and 0.80 respectively (Table 5).
When tested with all the other water level monitoring stations but
station 2, the WSC accurately identified 86.6% (78.0 to 90.9%) of the
data as wet or dry, with kappa coefficients ranging from 0.5 to 0.8,
attesting for a moderate to very good agreement for those stations

Fig. 4. Seasonal wetland soil column profiles illustrating different phenomena controlling the upper soil layer wetness status and the diagnostic (■: wet; □: dry; :
either) made by the three types of sensors, highlighting the cross-sensor agreement or mismatch. Dark blue: aquifer or standing water; water table; dots: capillary
fringe; and sky blue to brown: soil of decreasing soil moisture content. RN: rainfall; RO: runoff and/or river bank overflow; ET: evapotranspiration. A) Dry wetland:
no water input and the water table or capillary fringe do not reach the upper soil layer. B) Wet wetland with capillary fringe: the capillary fringe saturates the upper
soil layer. C) Wet wetland by excess rainfall or runoff: input water intensity exceeds the infiltration rate. It saturates the upper soil layer, although the water table is
deep. D) Lateral flooding. E) Saturated soil resulting from the transitioning from (B) or (D) after a sustained input of water, which saturates the entire soil column.
Additional water accumulates at the surface. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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(Table 5 and Fig. 9). The lower performance for station 2 is mostly due
to the prediction by WSC that station 2 was wet from 05/2013 to 01/
2014, despite the groundwater depth being below 1 m (Fig. 9). This
diagnostic mismatch is very likely attributable to a misleading diag-
nosis about the upper soil moisture status by the GWE sensor during an
episode of groundwater – surface water disconnect as explained in
Section 5.1. and Fig. 4D. This assumption cannot be verified by field
monitored data since we only started measuring surface water elevation
at station 2 in May 2015, i.e. after this period occurred.

In some other cases (Stations 3 and 5), the prediction accuracies for
the classification is lower for wet than dry cases, i.e. the MODIS product
detects more cases of saturated or inundated status than measured by
field sensors. This likely results from the diagnostic mismatches illu-
strated in Fig. 4B to D. For example, the wet status prediction by MODIS
during a period of low groundwater level in June 2014 for PVWL01, 03
and 06 (Fig. 9), is likely due to the phenomenon depicted in Fig. 4C:
rainfall moistened the wetland surface at the beginning of the rainy
season when the aquifer water level was still deep underground. An-
other example of this is found in Station 3 and 5 during January 2015.

There, the water level dropped abruptly, but the upper soil layer re-
mained saturated by capillary fringe or runoff from the nearby river
(Fig. 4B and C). Under these assumptions, MODIS rightfully captured
the upper soil layer moisture status in both example cases, whereas the
GWE and SWE sensors did not. Additionally, the coarse pixel size might
play a role in this apparent misclassification as hinted by the mea-
surement of standing water during that time frame at the surface water
monitoring well PVCA01, 700 m away from well PVWL01. Therefore,
the pixel area likely exhibited standing water at one location, and
shallow groundwater at another.

While the WSC at the monitoring station 2 (~100 m from river
edge) failed to consistently detect flooding by river overbank flow
events (that are indicated by the sudden spikes in groundwater eleva-
tion data in Fig. 9), there was a higher frequency of wet status pre-
diction during the dry season, when these events occur (Fig. 9, dashed
circles).

5.1.4. Wetland wetness dynamics identifier
BR26 was also the SI with the strongest relationship with measured

Fig. 5. Rainfall (RN) at the weather station and 15-minute groundwater elevation (GWE) and surface water elevation (SWE) at the field monitoring stations. SWE is
only plotted when there is ponding water. Dashed lines indicate ground level for all the stations where SWE and GWE wells are< 1.5 m apart; at station 1, where
wells are 700 m apart, one line is provided for each well. Light grey in (F) subplot is the tidally influenced river stage (Fig. 1). Grey dots in the bottom axis of each
subplot indicate when the water level fell under the sensors' tips. Data gaps are due to sensor malfunction.
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GWE at monitoring well PVWL01 (R2 = 0.71 Supplementary Material
A – Fig. A14). Fig. 10 shows a similar dynamic between the normalized
BR26 and water level at the other monitoring locations, although the
water elevation fluctuates more abruptly with sudden rises and falls.
We think that this behaviour is due to a sandy layer underlying the clay
layer and that acts as a drain, hence rapidly emptying or filling the
groundwater storage with water. However, due to the lagged response
between the groundwater level and the soil moisture, it is reasonable to
think that the upper soil layer wetness follows a smoother pattern that
matches with BR26 (Fig. 10).

5.2. Reconstruction of hydroperiod history

Raw and monthly-averaged time series data of the fraction of each
sub-wetland superficial area detected wet by the WSC are shown in
Fig. 11. The spatiotemporal wetting/drying patterns and variability
across the wetland from 2000 to 2016 are displayed in the composite
maps of interannual, monthly average and standard deviation of the
wetness values diagnosed by the WSC and WDI in Fig. 12 and Supple-
mentary Material A – Fig. A16. Daily time step videos of the WSC and
WDI values are in Videos 1 and 2. The main expected drivers (landscape
features and precipitations) are indicated in the products where and
when relevant to support the interpretation of the observed spatio-
temporal variability. These time-lapse videos clearly display the wet-
ting and drying patterns in phase with rainfall and reveal that portion of
the wetland in the river fringe and in areas adjacent to the irrigation
districts become wet during the dry seasons.

6. Discussion

6.1. Framework for wetland status detection

6.1.1. Field-measured water elevation time series
Overall, the field monitoring data (Fig. 5) revealed complex hy-

drologic patterns within the wetland. They showed that wetland is
seasonally flooded, and suggest that surface wetness is largely driven by
precipitation and groundwater, river-bank overflow during major
spring tide events, and suggest the occurrence of flooding from the ir-
rigation district. When conducting the fieldwork, we also observed (but
did not measure) intermittent runoff controlling wetland surface wet-
ness. Although the latter three water sources are not as important in
magnitude as precipitation and groundwater, our data showed that they

play an important role in controlling the timing and frequency of in-
undation and hence hydroperiod.

In addition to their use for training the spectral algorithm, the field
measurements reveal and measure a high point-scale temporal varia-
bility of water elevation that remotely sensed data was not able to
capture. Therefore, our study illustrates that in-situ, high-resolution
data is complementary to remotely sensed data. Such a hybrid approach
should, therefore, be preferred whenever possible. Importantly, these
data also helped to identify and describe sensor diagnostic mismatches
that needed to be taken into account when conducting our study and
could guide others.

6.1.2. Pixel-based quality filter and assessment of the MODIS products
The ease of data access and processing with the cloud-based Google

Earth Engine platform allowed us to use the full-depth of the MODIS
archive to compare daily productswith 8-day composites. This enabled
the observation of the wetness status of the wetland at any specific date
in the past, granted that the image was not filtered out.

The selection of the less-constraining filter 4 (blue-band thresh-
olding as per Sakamoto et al. (2005)) allowed us to increase the tem-
poral frequency of the data and reduce the length of the temporal data
gaps (Fig. 8 and Supplementary Material A Figs. A11 to A13). Although
the filter appeared to perform well for our study case, this might not be
the case for other case-study applications. Filter assessment remains a
required preliminary step, and the MODIS quality assurance informa-
tion should be preferred in case for which high temporal resolution data
is not required.

The results of this study also highlighted a clear difference in the
signal quality from images sensed by sensors mounted in the Terra (AM
overpass) and Aqua satellites (PM overpass). The latter showed more
unexplained variability – likely caused by undetected haze/storm ac-
tivity prevailing during the afternoon in this tropical area – and was
therefore excluded from this analysis. This important finding should
incentivize future studies to systematically assess both datasets in-
dividually before deciding on the use of either or both.

6.1.3. Wet/dry WSC and continuous WDI
Our results showed that simple binary (wet/dry WSC) and con-

tinuous (WDI) spectral algorithms could capture wetland hydric status
and dynamics. WSC and WDI are complementary of each other. The
WSC provides a clear wet/dry diagnostic (e.g. to characterize hydro-
period such as in Fig. 11) and WDI tracks continuous inundation or

Fig. 6. Time series of BR26 from four alternative MODIS sensor sources (Terra – MOD, Aqua – MYD, or both – MCD), collections (daily – 09GA or 8-day composite –
09A1), and filtering criteria (f#).
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water elevation, effectively an indicator of wetland moisture dynamics.
In the case of Palo Verde, the WSC performed best with a single-bran-
ched tree, and the same SI was identified for both WSC and WDI.
However, the SIs can be different and distinct for other applications.
Importantly, a multiple-branch tree based on multiple SIs could per-
form best. In such a case, a multivariate regression approach would be
recommended and can be readily accommodated within the proposed
framework.

The wet/dry WSC that performed best for the Palo Verde case study
was a single -branch decision tree with BR26 and a threshold at 1.66. It
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Fig. 8. Cumulative probability distribution function (CDF) of the number of
successive days without image in the MOD09 product for alternative collections
and filtering criteria (f#). Evaluated from FEB/2000 to MAY/2016 on data
extracted from the pixel overlapping with station 1 (PVWL01). Numbers in
between brackets indicate the total number of images.

Table 3
Filter combinations tested for pixel-level quality
screening. The 1–4 filtering criteria certify that: (1)
pixel is clear of cloud cover according to State QA
band; (2) pixel is clear of shadow according to State
QA band; (3) blue band reflectance is smaller than
0.1; and (4) sensor zenith angle is smaller than 32.25
degree.

Filter no. Filtering criteria

Filter 0 None
Filter 1 1
Filter 2 2
Filter 3 1, 2
Filter 4 3
Filter 5 4
Filter 6 3, 4
Filter 7 2, 3, 4
Filter 8 1, 2, 4
Filter 9 1, 2, 3, 4

Table 4
Spectral band numbers and ranges used in MCD09 MODIS products.

Band number Spectrum Wavelength range (nm)

(i or j in Eqs. (1)–(2))

1 Red 620–670
2 NIR 841–876
3 Blue 459–479
4 Green 545–565
5 SWIR1 1230–1250
6 SWIR2 1628–1652
7 SWIR3 2015–2155
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gave good results in predicting Palo Verde wetland hydric status (87.9%
correct predictions overall; kappa coefficient of 0.7). The spectral index
with the highest Pearson correlation coefficient, when regressed against
the water level values was NDI26 (R2 = 0.71). However, BR26 had
nearly equivalent performance (R2 = 0.70, Supplementary Material A –
Fig. A14). Correlation between the two SIs was also high (Pearson's

coefficient = 0.99, see Supplementary Material A – Table A2). Thus,
either could be used as a WDI for the Palo Verde wetland complex. Five
other SIs had a coefficient of determination higher than 0.50: NDI27
(R2 = 0.64), NDI25 (R2 = 0.54), BR25 (R2 = 0.54), NDVI (R2 = 0.50)
and TVI (R2 = 0.50). NDI25 is identical to the NDWI proposed by Gao
(1996). This index and variations of this index, produced by

Table 5
Confusion matrix to evaluate the performance of the WSC.

Measured

Monitoring station Prediction
accuracy

Kappa Dry
(GWE < −1.5 m and
SWE = 0 m)

Wet
(GWE > −0.2 m or SWE
>0 m)

Unknown
(no SWE data and
[−1.5 m < GWE < −0.2 m])

(1) PVWL01 (training
data)

91.3% 0.8 Predicted Dry 183 33 121
Wet 7 239 21

(3) PVWL03 -
PVCA07

78.0% 0.5 Dry 344 3 4
Wet 118 84 23

(4) PVWL04 -
PVCA08

90.9% 0.8 Dry 280 1 35
Wet 36 90 51

(5) PVWL05 -
PVCA08

86.8% 0.6 Dry 371 2 16
Wet 62 53 37

(6) PVWL06 -
PVCA10

88.5% 0.7 Dry 231 0 19
Wet 39 70 138

(2) PVWL02 -
PVCA11

57.1% 0.1 Dry 4 41 292
Wet 1 52 145

All 85.3% 0.7 Dry 1413 80 487
Wet 263 588 415

All without station 2 86.6% 0.7 Dry 1409 39 195
Wet 262 536 270

Fig. 9. Rainfall (RN), groundwater elevation (GWE) and surface water elevation (SWE), color-coded with wet/dry status as detected by the WSC. For clarity, SWE is
plotted only when water was above the ground level. Dots in the bottom axis indicate when the water level fell under the sensor tip. Dashed lines correspond to the
1.5 to 0.2 m water table depth interval for which the corresponding surface hydric status is uncertain due to capillary fringe effect. Dashed circles highlight cases of
river flooding events detected with the WSC. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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interchanging the three bands in the SWIR spectral region (NDI25,
NDI26 and NDI27), were the three best performing SIs after BR26. Al-
though Gao's NDWI (hence NDI25) was initially proposed for vegetation
liquid water content, its success for detecting the Palo Verde wetland
upper soil layer wetness may be explained by its sensitivity to soil
moisture caused by the rapid response of vegetation water content to
changing soil moisture conditions, as demonstrated by Gao (1996). It is
because of these properties that authors have used an identical index
named the Land Surface Water Index (LSWI) in other studies
(Chandrasekar et al. 2010; Xiao et al., 2005a). The relative sensitivity of
NDVI and TVI that are initially designed for vegetation monitoring is
attributed to the vegetation response to the soil hydric status, but,
importantly, also to the fact that these SIs are known to be sensitive to
background soil moisture. Note that the EVI and SAVI, vegetation in-
dices corrected to exclude such background effects (Huete, 1988), ex-
hibited lower performance (R2 = 0.40 and 0.41 respectively). These
results are encouraging as they exemplify that the best SI identified for
the case study wetland account for more than just the vegetation re-
sponse to hydric conditions, but are also representative of the hydric
status at the ground level. Tasseled Cap SIs were far weaker predictors
of wetland wetness status (R2 = 0.12, 0.30 and 0.37 for TCb, TCg and
TCw respectively), which contrasts with findings from Ordoyne and
Friedl (2008) and Li et al. (2015), who demonstrated the success of
these SIs in the Everglades National Park wetland and a shallow and
saline seasonal lake and associated marshland in Southern Spain, re-
spectively. However, the study from Li et al. (2015) demonstrated that
NDI26 was more strongly correlated to the shallower and more vege-
tated lacustrine areas, which is in concordance with our results for this
shallow wetland. Finally, McFeeters' (1996) NDWI and its variations
(NDI42,45,46,47), as well as the compound index DVEL failed to capture
the wetness states dynamics in our study wetland. This may be due to
the more heterogeneous land cover in the Palo Verde wetland in
comparison to the open water area and the paddy rice fields for which
these SIs were initially developed.

Overall, the WSC and WDI identified for the Palo Verde wetland
complex aligns with the findings of Chandrasekar et al. (2010) who
found that NDI26 responded faster than NDVI to moisture changes, and
Xiao et al., 2005a, who successfully used NDI26 to detect floods in rice
paddy fields. They can be viewed as a compound indicator of the
overall Palo Verde wetland hydric status – including soil moisture, li-
quid vegetation water, and standing water.

It is important to stress that, although using the MODIS product
with a multispectral WSC/WDI common to the entire wetland area gave
satisfactory results for our case study, further research should test the
applicability of such approach to other wetlands with different soil and
vegetation cover.

6.1.4. Sensor diagnostic mismatch
High-resolution field devices, coupled with a good knowledge of the

wetland, allowed us to highlight cases of diagnostic mismatch and ap-
parent misclassifications. We showed that GWE and SWE are not always
sufficient to capture the upper soil layer hydric status. Complementing
the field data with soil moisture devices could address that issue in
future studies. However, such devices are often more complicated to
install and maintain and are not as reliable as water elevation wells,
particularly in remote areas or swelling/shrinking wetland soils.
Therefore, our study highlights that the accurate depiction of wetness
status in complex hydrologic systems such as wetland must rely on
careful analysis of multiple and complementary data sources.

6.1.5. Capturing fast-changing hydric conditions
Results showed a weak detection potential by the wet/dry WSC of

river flooding events (Fig. 9, station 2), which is likely due to mixed-
pixel effects. Indeed, waters from lower intensity flooding events only
partially flood the 500 × 500 m pixel area. However, peaks in the
continuous WDI (BR26) values occurred simultaneously with river

overbank flooding events (red arrows in Fig. 10, station 2), indicating
that the identifier is sensitive to these flooding events. These peak va-
lues often remained below the 1.66 threshold for the wet/dry WSC,
which supports our interpretation that the weak detection rate of
flooding events with binary classification is due to the mixed-pixel ef-
fects. Therefore, in the case of flooding events of smaller magnitude,
abrupt changes in the WDI signal may be a better indication of flooding
events than its absolute value. The Videos 1 and 2 displaying daily maps
provide interactive support to visualize such changes. Additionally, the
daily MOD09 product-based time series and composite maps allowed to
gain insight about the soil saturation and flooding start date and in-
terannual variability (Fig. 12), information that is critical for wetland
managers (Gilman 1994) given the close link with vegetation devel-
opment (Murray-Hudson et al. 2015).

6.2. Reconstruction of hydroperiod history and underlying mechanisms

The MODIS-derived end-products (Fig. 10 to Fig. 12 and Supple-
mentary Material A Figs. A15 and A16) encode information useful to
characterize wetland hydroperiod, and its 2000–2016 trajectory and
drivers. Seasonal dynamics were clearly captured by the WSC and WDI,
in accordance with the field water level measurements (Fig. 9). Al-
though wetland wetness progressively increases as the rainy season
starts in May, the upper soil layer was not detected as "wet" until June
in most locations (Figs. 11 and 12), which suggests that an appreciable
amount of accumulated rainfall is needed for the wetland's upper soil
layer to become saturated or flooded. This finding is supported by the
high evapotranspiration rate in this area (OTS, 2016), and the wide
cracks in dry soils (Stipo, 2015) permitting infiltration of the first
rainfall past the upper soil layer. The high standard deviation in WDI
values at the onset of the rainy season from May to August (Fig. 12)
demonstrates the large degree of interannual variability of the hydro-
period in this wetland system. The products also revealed substantial
differences in hydric status dynamics – and controlling factors thereof –
across the wetland, and the existence of water inputs other than rain-
fall. These indications that external water sources are controlling the
wetland hydric status was also revealed by the field water level mea-
surements (Fig. 5). Here, we detail the most important features revealed
for each sub-wetland unit:

Palo Verde sub-wetland. Fig. 11 indicates that the Palo Verde and
Nicaragua sub-wetland units take the longest to draw down, whereas
the other sub-wetland units are almost entirely dry shortly after the end
of the rainy season. This longer drying-down period in Palo Verde is due
to topography; lower elevations in that part of the wetland implies an
accumulation of deeper standing water pools.

Nicaragua sub-wetland. Fig. 12 reveals that the lower dry-down rate
measured at Nicaragua (Fig. 11) is due to two areas that are frequently
wet year-long: a stripe crossing the Nicaragua sub-wetland unit, and its
southern corner. The latter finding suggests that the Tempisque and
Bebedero rivers bordering that corner are frequently feeding the wet-
land with water at that location. The wet stripe might be an accumu-
lation of the water flowing from the district through the La Bocana sub-
wetland. It may also originate from intermittent streams diverging from
the Tempisque River.

La Bocana sub-wetland. The postulate that irrigation water might
flow by the La Bocana sub-wetland is supported by the large inter-
annual fluctuations and more erratic hydroperiod dynamics in this site
(Figs. 11 and 12), suggesting that the surface soil wetness is controlled
by irrigation cycles, in addition to climate.

Poza Verde and Piedra Blanca sub-wetlands. Composite maps in
Fig. 12 and Supplementary Material A – Fig. A6 showed that part of
Poza Verde and Piedra Blanca sub-wetlands also maintain higher
moisture levels throughout the year, which is probably due to lateral
seepage, intermittent streams entering the sub-wetland, and riverbank
over-flow from the Tempisque River. The strong interannual variability
(large standard variation) in Poza Verde revealed in Fig. 12 might be
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another indication that runoff water is entering the wetland from the
adjacent irrigation district.

In addition to modifying the hydroperiod locally, the pieces of
evidence of influence from the irrigation district suggest that agro-
chemicals may periodically enter the wetland. The major influence of
the surrounding rivers is also notable, especially since the discharge and
dynamics of the two rivers are known to have changed drastically after
the development of the inter-basin water transfer for hydropower
generation and irrigation in the late 1970s (Fig. 1). Therefore, it is
likely that agricultural tailwaters and the surrounding rivers may have
changed the timing, volume, and quality of water entering the wetland.
These lines of evidence should serve as guidance for additional

monitoring and model development to better quantify and understand
the nature, importance, and impacts of these external factors. These
findings highlight the need to define management strategies that ex-
pand beyond the boundaries of the wetland by fully considering tem-
porally and spatially remote hydrological connections, and the impacts
of the watershed management (hydropower generation, irrigation and
urban supply, return flows and canalization, land use, etc.) on the
nature and dynamics of these connections.

Overall, our framework gave encouraging results illustrating that
long-term wetland hydroperiod can be monitored at high-temporal and
medium-spatial resolution at low cost and relatively low time invest-
ment. Besides providing data useful for model design and calibration, it

Fig. 10. Comparison of normalized surface water elevation (SWE), and groundwater elevation (GWE) with the normalized BR26. SWE is only plotted when water was
above the ground level. (**) and gse in the y-axis indicate the normalized threshold value of BR26 for wet/dry prediction, and ground surface elevation, respectively.
Red arrows point to BR26's response to river overbank flow flooding events. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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allows to effectively reveal long-term trends and short-term transfor-
mations of wetland hydrology. Importantly, such data can fuel im-
portant information base to track and assess the path of restored wet-
lands (Acreman et al., 2007; Zedler 2000).

6.3. Limitations

One limitation of our approach arises from the uncertainty about
the exact height of the soil capillary fringe and the degree of soil sa-
turation as a function of groundwater elevation and evapotranspiration
demand, and the overall sensor diagnostic mismatch. Future research
could address this by using the proposed methodological framework
with in situ soil moisture measurements in addition to water elevation.
However, soil moisture sensors also come with caveats as mentioned in
Section 6.1.4.

Another limitation is the coarse pixel size of the MODIS products
that inevitably leads to prediction inaccuracies. Our framework with
MODIS also failed in consistently detecting fast-changing processes,
which we attributed to mixed pixel effects and other confounding fac-
tors. Using MODIS, a more quantitative characterization of flooding
characteristics could be achieved by using more sophisticated techni-
ques such as spectral unmixing (Halabisky et al. 2016) or multi-satellite
approaches, e.g., by coupling MODIS with SAR (Aires et al. 2013;
Martinis et al. 2013). On the other hand, improved prediction accuracy
could be reached by using satellite products with greater spatial details
such as Landsat (Collins et al. 2014; Gómez-Rodríguez et al. 2010;
Halabisky et al. 2016; Huang et al. 2014). For our framework, we chose
MODIS (1999-present, 500 m pixel size) over Landsat (1984-present, 30
m pixel size) products because of the lower revisit frequency of the
latter (once per 16 days). Indeed, the temporal resolution of cloud-free
Landsat images is insufficient to capture seasonal and fast changing
dynamics in often-overcast tropical area such as in the Palo Verde

National Park (Alonso et al. 2016). However, newer sensors exist that
would warrant further investigation. For example, the multispectral
data from the Sentinel-2 satellites launched in 2015 and 2017 (2–3 days
revisit time), spatial resolution in VIS and NIR ranging from 10 to 20 m
(Drusch et al. 2012; Gatti et al. 2018) should constitute an alternative
once the data record is sufficiently long to document interannual dy-
namics. RapidEye constellation data (2009-present, daily revisit, 5 m
size pixels; Tyc et al. 2005) represent another appealing option, al-
though they do not include records in the SWIR, and their access and
processing is less straightforward. Notwithstanding these alternatives,
the MODIS archive remains unique for the historical information it
encodes.

Another important limitation for our case study is linked to the
period covered by MODIS (2000-present), which implies that the period
in the 1970s during which major transformations were implemented in
the Tempisque watershed (Fig. 1) remains undocumented. Therefore,
the time series reconstructed in this study do not capture the transition
of the system from its “pre-dam” status. However, studies have shown
that the entire watershed and wetland have been witnessing a greening
phenomenon (Alonso et al. 2016) and continuous land-use and cover
transformation during the last decades (Convertino et al. 2016; Murcia
et al. 2016). Hence, the new data can support understanding the driving
processes and assess the variability, changes and trajectory of the sys-
tem's “post-dam” status.

7. Conclusion

We proposed a cost-effective, straightforward methodological fra-
mework that uses the full range of publicly available MODIS Land
Reflectance Products, together with fine temporal scale and high pre-
cision water elevation data, to identify and assess a site-specific spectral
algorithm capable of capturing wetland hydric status. We used the

Fig. 11. Time series of the wetland areal fraction reconstructed for each sub-wetland unit.
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method to map hydroperiod in the Palo Verde wetland in Costa Rica
from 2000 to the present at a sub-weekly temporal resolution, pro-
viding new insights about its hydrology that can help guide future
studies and support wetland management.

The strengths and weaknesses of our framework lie in its simplicity.
It can be readily implemented for any mid-to-large scale wetlands
conditioned by the availability of field-measured water elevation data.
It supports characterization of intra and interannual variability and
long-term trends in hydroperiod's and can shed light on underlying
hydrological processes and controlling factors. Although our framework
is capable of revealing the main characteristics of wetland hydroperiod
and its drivers, the simplicity of the approach, combined with the
coarse scale of MODIS product hamper a consistent detection of rapidly
changing events and leads to some diagnostic inaccuracies.

Despite these limitations and conditioned by the availability of
field-measured water level data, the proposed WSC/WDI framework
remains an attractive option to help scientists and wetland managers
and practitioners to readily produce new data and knowledge about the
long-term spatiotemporal hydrology of any mid to large scale wetland
system globally. Such data and information are instrumental for change
detection and impact assessment, for model calibration and validation,
and to eventually support the definition of wetland management and
restoration strategies.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.rse.2020.111807.
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