
1.  Introduction
Forests make up 31% of global land cover (Keenan et al., 2015) and exert a primary control on terrestrial and 
atmospheric water fluxes (Bonan, 2008; Fisher et al., 2009; Makarieva et al., 2013) by affecting the partitioning of 
precipitation into evapotranspiration (ET), infiltration, and runoff (Good et al., 2015; D. M. Lawrence et al., 2007; 
Mercado-Bettín et al., 2017). Decades of previous research have shown strong associations between plant commu-
nity structure and rainfall partitioning (e.g., reviews in J. A. Jones et al., 2020; Komatsu & Kume, 2020; Zhang 
et al., 2017). Broadly, forest biomass reductions increase local water yield (defined as precipitation minus ET) 
by reducing interception and transpiration, which are dominant components of the total ET flux (e.g., Bosch & 
Hewlett, 1982; Cecílio et al., 2019; Davie & Fahey, 2018; Peña-Arancibia et al., 2019; Schulze & George, 1987; 
Sun, Zuo, et al., 2008). By complement, afforestation is associated with reduced water yield in catchments glob-
ally, especially in arid regions (Brown et al., 2005; Farley et al., 2005; Filoso et al., 2017). While it is important to 
consider regional effects of reducing local ET on downwind rainfall (Creed et al., 2019; Stickler et al., 2013), the 
clear local linkages between forest cover and water yield imply an opportunity to manage forests for water yield 
benefits to human uses and environmental flows (Greenwood et al., 2008; McLaughlin et al., 2013).

Abstract  Forest management can play an important role in landscape-scale water balances and thus 
regional water supply planning, necessitating improved quantification and prediction of forest water yield (i.e., 
rainfall minus evapotranspiration (ET)). We used high frequency soil moisture data to quantify soil ET and 
interception in 30 pine stands capturing regional variation in aridity, hydrogeology, and forest management. 
We evaluated typical forest rotation stages (i.e., clear cuts through mature stands), as well as stands restored 
to historical, lower biomass conditions. Our results supported the expectation that forest management can 
strongly influence local water yield. A simple model using leaf area index (LAI), hydrogeologic setting, and 
climate aridity (P:ET) explained nearly 80% of observed water yield variation. LAI emerged as the dominant 
forest structural control, influencing both soil ET and interception rates, with each unit decrease in LAI 
increasing water yield by nearly 10 cm. While other forest attributes (e.g., basal area, groundcover, species) 
were less important for predicting stand-level water balances, aridity and hydrogeologic setting emerged as 
highly significant predictors of water yield. We further observed small and short-lived effects of low-intensity 
prescribed fires on soil ET and no discernible effect of pine species, suggesting that maintaining low density 
pine forests—regardless of species—is a viable management strategy for increasing water yield. Overall, our 
results illustrate the utility of soil moisture-based methods for stand-level water balances and provide useful 
models for predicting landscape water yield under a range of forest management and hydroclimatic settings now 
and in the future.

Plain Language Summary  Evapotranspiration is a major part of the water balance in coastal plain 
forests. In this work we use soil moisture measurements to calculate how much water forests use, and thus how 
much is left over for aquifer recharge and stream flow generation. We show that this “water yield” is accurately 
predicted using local climate, hydrogeology, and forest density (using leaf area index). Since water supply 
planning depends on how much water yield occurs from the landscape, our simple models to predict water yield 
can be used to understand how forest management decisions impact water supply, and inform how incentives to 
forest landowners can help meet regional water supply sustainability goals.
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Globally, forests are managed for a diversity of functions and ecosystem services (García-Nieto et al., 2013), from 
provisioning of timber and other wood products (Duncker et al., 2012), to carbon sequestration and other climate 
change mitigation (Bell & Lovelock, 2013; Lutz et al., 2016), to habitat value and fire regime maintenance (Free-
man et al., 2017; Hunter, 1990; Stephens et al., 2013). In many regions, including the southeastern United States, 
a large fraction of forested lands are intensively managed for timber production (Dudley et al., 2014; Sohngen 
et al., 1999; Trømborg et al., 2000), with high-density, monotypic, short-rotation plantings, and management 
actions ranging from clearcutting and thinning to competition control and fertilization (Becknell et al., 2015; 
McLaughlin et al., 2013). Managing the biomass in these forests may afford opportunities to optimize tradeoffs 
among wood products, water yield, and other services (González-Sanchis et al., 2019; C. N. Jones et al., 2018). 
However, while incentive and payment-for-ecosystem-services (PES) programs have been developed to support 
carbon sequestration (Jayachandran et al., 2017), habitat provisioning (Tuanmu et al., 2016), and water quality 
protection (Kreye et  al.,  2014) in forests, efforts to optimize water quantity (e.g., hydrological easements or 
“payment for water yield” programs) have been slower to develop (Susaeta et al., 2017). This lag is due, at least 
in part, to uncertainties about the relationships among forest structure, climate variation, and dynamic water yield 
(McNulty et al., 2018).

Most studies relating forest cover to water yield are performed at the watershed scale, using flow data from the 
basin outlet (i.e., the “hydrometric method” (Bosch & Hewlett, 1982)) and are thus most informative regarding 
hydrologic effects of basin-scale, rather than stand-scale, changes. Moreover, most analyses focus on complete 
timber harvest (Rothacher, 1970; Stednick, 1996) or wholesale deforestation or afforestation (Farley et al., 2005; 
Sahin & Hall, 1996; Zhang et  al.,  2017), though forest thinning has been explicitly studied in some systems 
(Downing, 2015; Hawthorne et al., 2013; Lesch & Scott, 1997; Yurtseven et al., 2018). Even when adequately 
controlled using a paired watershed approach (e.g., Brown et al., 2005; Hornbeck et al., 1997), the outcomes of 
these analyses are difficult to use for direct predictions of how stand-scale management of forest structure (e.g., 
motivated by PES incentive programs) would manifest as local water yield, limiting their widespread utility. For 
example, while confirming the overall direction and average strength of water yield changes with forest cover 
reduction, Bosch and Hewlett (1982) explicitly note that extreme variation in outcomes across “such a scattered 
set of experimental catchments” prevents generalizable statistical inference and development of “derived func-
tions relating water-yield changes to forestry practices”.

An important limitation of the watershed-scale approaches described above is thus limited support for local deci-
sions about wood versus water tradeoffs without additional empirical data collection. Specifically, measurements 
of forest ET and resulting water yield over regional gradients in environmental setting (e.g., soil types, hydro-
geology) and across a diversity of operationally relevant management regimes (i.e., conservation vs. production 
forestry (Becknell et al., 2015)) are required in order to adequately define this trade-off (Schwaiger et al., 2019). 
Using the paired watershed approach at this scale of inquiry is unfeasible given the need to identify, treat, and 
monitor a large number of treatment and control watersheds; treatment costs alone make this endeavor impracti-
cal at the watershed scale (Bosch & Hewlett, 1982). Forest ET at the stand scale can be directly measured using 
the eddy covariance method (Paul-Limoges et al., 2020; Soubie et al., 2016; Sun, Noormets, et al., 2008), making 
it a potentially useful approach. However, installation and maintenance of eddy covariance towers at the granu-
larity required is prohibitively expensive (e.g., Markwitz & Siebicke, 2019), highlighting the need for lower-cost 
methods to measure forest water use and yield at a large number of sites in support of accurate and regionally 
appropriate relationships between forest structure and water yield.

Within this context, the overarching goal of our work was to quantify changes in water yield induced by differing 
management strategies in pine forests of the southeastern United States, a region of increasing water shortages 
(e.g., Sun, 2013). To do so, we applied a soil moisture-based method for measuring soil evaporation and transpira-
tion (Nachabe et al., 2005), coupled with a recently developed, parallel method to estimate interception (Acharya 
et al., 2020) to quantify the total ET flux and resulting water yield in 30 experimental plots distributed across five 
sites in Florida (USA) (Figure 1). Sites were selected to span gradients in climate, hydrogeological setting, and 
soil types. Within sites, experimental plots characterized a wide range of forest structural attributes (from clear-
cuts to mature pine plantations) and management approaches (e.g., species selection and restoration activities, 
including fire), with the overarching hypothesis that lower biomass stands would yield more water. Using these 
direct empirical measurements of stand water balances, we then sought to develop simple operational models of 
water yield based on readily measurable site properties (e.g., forest stand attributes, hydroclimate conditions, and 
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hydrogeologic setting) that allow for robust predictions of water yield in new settings and under alternative future 
climate and land management scenarios.

2.  Materials and Methods
2.1.  Study Sites

We selected five study sites (Econfina – EF, Little River – LR, Deer Haven – DH, Green Swamp – GS, and 
Longleaf Flatwoods – LF) across Florida, USA, each with six 2-ha plots spanning a range of forest structural 
characteristics (Table 1; Figure S1 in Supporting Information S1). Sites varied in hydroclimatic forcing, with 
aridity index (i.e., precipitation: potential ET (PET)) during our study period (2014–2017) ranging from 0.96 
to 1.07. Geologic setting also varied across sites, with two sites having all or some plots located in unconfined 
aquifer settings with deep (>5 m) water table (WT) depths (4 of 6 plots at site EF; all 6 plots at site LR). In 
contrast, at plots where the regional aquifer is confined by a shallow aquiclude, mean WT depths ranged from 
near ground surface to a maximum of 2 m belowground. Soils were uniformly dominated by fine sand, consisting 
of deep well-drained entisols (Lakeland and Penney sands) and ultisols (the Blanton-Alpin-Bonneau complex), 
moderately drained soils (Tavares and Milhopper sands), and more poorly drained spodosols typical of Flori-
da's flatwoods (Plummer, Sparr, Pomona, Ona, Chipley, Pottsburg, and Newnan sands). We selected six plots 
within each site to capture a wide range of forest structural attributes and forest management strategies. Each 
site contained both a recent clear-cut with low leaf area index (LAI) and a mature pine stand with high LAI and 
basal area (BA) (Table 1). Remaining plots at each site had intermediate LAI and BA values due to rotation age 
and varying midstory management and canopy thinning. Plots also varied in pine species, including slash pine 
(Pinus elliottii), sand pine (Pinus clausa), and loblolly pine (Pinus taeda), and understory composition and cover 
(hereafter ground cover (GC)). A subset plots (n = 7) underwent low-intensity, prescribed fire during the study, 
allowing us to assess short-term fire effects on water yield using pre- and post-fire data.

Figure 1.  Water yield (Yw) estimates are obtained by subtracting (a) soil evapotranspiration losses (ETsoil) and (b) interception from (c) precipitation. Data flows 
supporting these calculations include: time series of surface soil moisture during storm events (a) to estimate interception; time series of depth-integrated total soil 
moisture (b) and hydroclimate data (c) to estimate ETsoil; and site attributes (aridity, water table depth) and forest structure (leaf area index, basal area, ground cover) 
variables (d) used in statistical predictions of Yw. Maps and photographs of selected study sites are presented in Supporting Information S1.
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2.2.  Forest Attributes

At each plot, we measured BA (m 2 ha −1), leaf area index (LAI, m 2 m −2) and GC to assess their influence on forest 
ET and thus water yield. Basal area was measured at the outset of the study using the point-centered quarter 
method. To capture seasonal patterns and annual changes, LAI and GC were measured quarterly in a 5 × 5 m 
grid covering 0.25 ha centered on plot instrumentation (see below), yielding 121 observations per plot. We meas-
ured LAI, capturing both midstory and canopy, using a plant canopy analyzer (LAI-2200C, LI-COR, Lincoln, 
Nebraska) at 1-m above the ground surface. We used a 90° restricting cap to ensure that measurements were made 
facing north and obtained during the middle (10 a.m.–2 p.m.) of each sampling day. We used raw projected (i.e., 
one-sided) LAI observations corrected to account for the non-random orientation of pine needles, which results 

Plot Long. Lat. Rainfall (cm) PET (cm) WT (m) Spp LAI BA Ia (cm) Yw (cm)

DH1 −82.3375 29.7458 130 (18) 132 (5) −0.82 (0.5) PT 0.75 0 26.4 33.8 (4.1 - 54.6)

DH2 −82.3281 29.7639 130 (18) 132 (5) −0.94 (0.5) PE 2.47 23.4 32.2 29.9 (−5.8 - 51.8)

DH3 −82.3808 29.7789 130 (18) 132 (5) −0.58 (0.4) PE 1.40 18.5 28.1 26.0 (−2.7 - 45.6)

DH4 −82.3875 29.7494 130 (18) 132 (5) −0.97 (0.5) PE 3.48 27.0 28.9 22.6 (−8.1 - 42.6)

DH5 −82.3894 29.7494 130 (18) 132 (5) −0.59 (0.3) PT 3.76 51.3 28.1 25.0 (−8.2 - 46.9)

DH6 −82.3364 29.7656 130 (18) 132 (5) −1.32 (0.7) PE 3.65 23.8 32.8 10.1 (−18.8 - 30.3)

EF1 −85.6153 30.4000 153 (15) 144 (11) −5.48 (0.9) C 0.12 0 21.2 97.8 (81.5 - 114.5)

EF2 −85.6139 30.3947 153 (15) 144 (11) −0.59 (0.3) PE 1.05 29.5 19.6 74.6 (59.6 - 93.2)

EF3 −85.6150 30.3975 153 (15) 144 (11) −5.48 (0.9) PC 2.41 39.6 21.4 72.4 (57.7 - 87.1)

EF4 a −85.6139 30.3964 153 (15) 144 (11) −1.34 (0.4) PE 0.65 13.0 18.8 93.3 (83.8 - 107.6)

EF5 −85.6150 30.3989 153 (15) 144 (11) −5.48 (0.9) PC 0.82 10.8 19.8 83.0 (62.5 - 98.5)

EF6 a −85.6117 30.4314 153 (15) 144 (11) −5.48 (0.9) PP 0.51 4.4 21.4 74.9 (55.2 - 90.8)

GS1 −82.0992 28.4000 131 (10) 143 (3) −1.85 (0.3) C 1.07 0 31.6 50.8 (44.3 - 61.1)

GS2 −82.0950 28.4081 131 (10) 143 (3) −0.83 (0.4) PE 2.56 36.0 31.1 25.4 (17.8 - 35.8)

GS3 a −82.1000 28.4056 131 (10) 143 (3) −0.98 (0.6) PE 2.04 29.4 31.6 20.3 (17.5 - 27.9)

GS4 a −82.0964 28.4008 131 (10) 143 (3) −0.95 (0.4) PE 1.12 18.4 27.1 34.8 (23.0 - 44.5)

GS5 a −82.0978 28.4008 131 (10) 143 (3) −0.68 (0.4) PE 1.13 12.8 30.4 30.1 (18.7 - 41.7)

GS6 −82.1050 28.4067 131 (10) 143 (3) −1.46 (0.7) PP 0.50 3.8 27.0 43.9 (36.4 - 51.1)

LF1 −82.2219 29.5364 134 (16) 136 (4) −0.6 (0.4) C 0.26 0 26.4 45.3 (31.0 - 79.5)

LF2 −82.2225 29.5356 134 (16) 136 (4) −0.70 (0.5) PE 2.85 38.7 29.4 29.1 (10.0 - 44.1)

LF3 −82.2239 29.5361 134 (16) 136 (4) −0.63 (0.4) PE 1.23 16.3 31.1 44.3 (27.4 - 73.6)

LF4 −82.2225 29.5353 134 (16) 136 (4) −0.63 (0.5) PE 0.86 13.4 32.8 44.4 (29.2 - 72.0)

LF5 a −82.1995 29.5697 134 (16) 136 (4) −2.86 (0.6) PE 2.72 23.9 33.3 25.0 (3.1 - 53.1)

LF6 a −82.2031 29.5672 134 (16) 136 (4) −2.36 (0.4) PP 0.93 8.5 33.2 46.8 (34.2 - 71.9)

LR1 −82.9819 30.0269 144 (20) 136 (4) −7.76 (1.1) C 0.46 0 22.8 65.0 (38.7 - 80.7)

LR2 −82.9994 29.9994 144 (20) 136 (4) −7.76 (1.1) PE 3.08 48.1 30.5 55.2 (25.6 - 71.0)

LR3 −82.9919 30.0322 144 (20) 136 (4) −7.76 (1.1) PE 0.80 4.8 18.3 58.2 (31.3 - 92.9)

LR4 −82.9925 30.0289 144 (20) 136 (4) −7.76 (1.1) PE 2.48 15.5 23.2 75.7 (45.9 - 90.8)

LR5 −82.9819 30.0256 144 (20) 136 (4) −7.76 (1.1) PE 1.50 13.5 22.8 54.4 (28.7 - 74.5)

LR6 −83.0083 30.0342 144 (20) 136 (4) −7.76 (1.1) PP 1.22 9.3 17.8 65.4 (29.8 - 88.2)

Note. Dominant species (C – clearcut, PC – Pinus clausa, PE – Pinus elliottii, PP – Pinus palustris, PT – Pinus taeda), site leaf area index (LAI, unitless) and basal area 
(BA, m 2 ha −1) are provided, along with average interception losses (Ia) and the site mean (and range) of annual water yield (Yw). Note that clearcut sites (Spp. = C) had 
sufficient canopy > 1 m to measure LAI, but no trees with diameter at breast height >5 cm to measure BA.
 aSites at which prescribed fires occurred during the project duration.

Table 1 
Summary of Plot Attributes Across Five Sites Showing Longitude (Long.), Latitude (Lat), Mean (and Standard Deviation) of Annual Rainfall, Potential 
Evapotranspiration and Water Table Depth
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in LAI underestimation by 12% when using the LI-COR LAI-2000 (Stenberg et al., 1994; Weiss et al., 2004); 
specifically, final projected LAI values are raw observed values multiplied by 0.88. At the same locations, GC 
(%) was recorded visually in 1-m 2 quadrats.

2.3.  Field Instrumentation

Each plot was instrumented to collect high frequency soil moisture data at multiple soil depths in three locations 
selected to capture variation in canopy and understory cover; at clear cut sites, groundcover alone guided loca-
tion selection. At each location (3 per plot), time domain reflectometry soil moisture sensors (CS655, Campbell 
Scientific, Logan, UT) were installed in the side wall of an augered hole at depths 0.15, 0.3, 0.5, 0.8, and 1.5 m 
belowground. At unconfined (i.e., deep WT) plots, an additional sensor was installed at 2.5 m depth. These depths 
were selected to capture dynamic soil moisture variation in shallower soil profiles and establish a high-mois-
ture, low-variation bottom boundary to meet the assumptions of the Nachabe et al. (2005) method; we present 
evidence that validates this assumption in the supplemental information (Figures S4, S5, and S6 in Supporting 
Information S1). Holes were backfilled with augered soil, attempting to match soil layering and bulk density. 
Each sensor was configured to record volumetric soil moisture content (θ) at 15-min intervals, and data were 
collected from 2014 to 2017 using CR800 data loggers (Campbell Scientific, Logan, UT). At each confined 
(i.e., shallow WT) plot, we also installed a WT monitoring well (2-cm, screened PVC well) 2–3 m belowground. 
Total pressure transducers (HOBO U20L-04, Onset Computer Corp., Bourne, MA) and an additional barometric 
pressure transducer (same model) installed in a dry well (McLaughlin & Cohen, 2011) were used to measure 
15-min water levels relative to the ground surface. At unconfined sites, we deployed pressure transducers in one 
pre-existing deep groundwater well per site. A weather station was installed in the clear-cut plot of each site to 
collect meteorological data (CM106B tripod, CM206 cross-arm, TE525-L25 tipping bucket rain gage at 1 m 
above ground, CS300-L14 pyranometer at 2 m above ground, 03002-L14 anemometer/wind vane at 2 m above 
ground, HMP60-L8 relative humidity probe at 2 m above ground) every 3 s, which were then used to calculate 
mean values at 15-min intervals. Weather data were used to estimate daily PET with the Penman (1948) method, 
which was selected to avoid assumptions about stomatal conductance parameters required in the Penman-Mon-
teith formulation. When comparing results between the two PET estimates, we found nearly identical values and 
across-site patterns.

2.4.  Soil Water Evapotranspiration Estimates (ETsoil)

Here, we distinguish between soil water ET (i.e., vadose and groundwater uptake via evaporation and transpi-
ration) and interception (and subsequent evaporation), which together represent total ET (Miralles et al., 2020). 
Soil water ET (hereafter ETsoil) was estimated from 15-min soil moisture data using a method developed by 
(Nachabe et al., 2005) (Figure 1a). Compared to the WT-based method (Gribovszki et al., 2008; Loheide, 2008) 
pioneered by White  (1932), advantages of this soil moisture-based approach are twofold: (a) it includes both 
groundwater and vadose zone water uptake; and (b) it does not require specific yield (Sy), eliminating uncertainty 
in ET estimation originating from this parameterization. Although the original method (Nachabe et al., 2005) 
was developed and applied in a shallow WT environment, use in regions with deeper water tables is possible, in 
principle, provided that soil moisture dynamics of the root-zone are captured. We validate this assumption in the 
supplemental information (Section S3 in Supporting Information S1), showing that soil moisture measured at our 
deepest sensors was uniformly much higher (∼2x) and much less variable (by 80%) than throughout the rest of 
the vadose zone, suggesting that nearly all soil moisture variation (and thus water use) occurs within shallower 
soil profiles. We note that our study sites are dominated by fine sand such that soil moisture profiles quickly reach 
hydrostatic equilibrium; slower equilibration may limit application in finer textured soils.

Following the Nachabe et al. (2005) method, we computed the integral of soil moisture volume through the soil 
profile (i.e., total soil moisture; TSM) for each location (three per plot) using trapezoidal integration of 15-min 
observations collected by the 5 (or 6) soil moisture sensors:

TSM =
∑�−1

�=1

1
2
∗ (�� + ��+1) (�� − ��+1) + �1 ∗ �1� (1)
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where z is depth below ground surface for each sensor and θi is the soil moisture content observed at sensor i. The 
last term on the right side of Equation 1 (θ1 * z1) accounts for soil moisture above the first sensor to the ground 
surface. Daily ETsoil (for non-precipitation days) for each plot location was then estimated as:

ETsoil = TSM𝑡𝑡 − TSM𝑡𝑡+1 + 24 ∗ 𝑠𝑠� (2)

where TSMt and TSMt+1 are total soil moisture at midnight on day t and t+1, respectively. Assuming ET is negli-
gible at night, s is hourly soil moisture recovery due to vertical or lateral soil water redistribution to the sensor 
location (induced by the gradient developed by daytime root water uptake), determined from the mean nighttime 
TSM slope between 11:00 p.m. to 6:00 a.m. for nights t and t+1. Daily ETsoil estimates from the three loca-
tions were averaged to yield plot-level ETsoil time series. As with the White (1932) method, this approach is not 
applicable during precipitation events, limiting ETsoil data to non-precipitation days. We also removed days with 
extremely shallow water tables (<20 cm) when the capillary fringe extends near or to the soil surface, obscuring 
diel ET-driven soil moisture patterns (Gillham, 1984).

Resulting ETsoil measurements and mean ETsoil:PET ratios were compared among plots to assess forest structure 
controls (e.g., LAI or BA), prescribed fire effects, and differences among pine species on plot-scale ET. To eval-
uate fire effects, we used paired t-tests to compare ETsoil:PET at 1-month, 2-months and 3-months post-fire with 
values observed in the month preceding the fire. To test for species-level differences in ETsoil, we compared the 
fitted slope between ETsoil:PET and LAI for slash pine (n = 18), longleaf pine (n = 5) and other pine (loblolly 
and sand pine, n = 5) stands. Significant differences in slopes were interpreted as species-specific impacts of 
LAI variation, with larger slopes indicating greater water use per unit LAI. This approach was necessary because 
the range and distribution of LAI for each species were not consistent (i.e., mean LAI = 1.75, 0.74 and 1.24 for 
slash, longleaf and other, respectively), precluding direct comparison of water yield by species without LAI 
normalization.

Finally, gap-filling ETsoil data for missing data due to days with precipitation, very shallow water tables, or 
equipment failure was necessary for water yield quantification at the annual scale (see Section 2.6). To do so, 
we constructed regression models to predict plot-scale ETsoil using daily TSM, PET, 7-day antecedent rainfall, 
and water-table depth data as explanatory variables. The proportion of ETsoil variation explained by these models 
varied across plots, indicating inherent differences in their hydrogeologic behavior. We selected the regression 
model for each data gap based on the best-performing (highest R 2) model for which explanatory data were avail-
able (e.g., using only PET and antecedent rainfall when TSM or WT data were absent). Importantly, gap-filling 
in this way double-counts ET losses on rainy days because water is lost both from soil and interception storages. 
To correct this, we adjusted ETsoil on all gap-filled days by subtracting estimated evaporation from interception 
storage.

2.5.  Interception

Because forest interception can be a large fraction of precipitation (Singh & Szeicz, 1979) and differs signifi-
cantly among stands in response to structural and compositional attributes (LAI, ) (Pypker et al., 2005), explicitly 
accounting for this ET component is critical to water yield estimates. In previous work (Acharya et al., 2020), 
we developed a novel soil moisture-based approach to estimate forest interception, which we used along with the 
soil moisture data described above to estimate daily interception for each study plot (Figure 1b). That method 
estimates total forest (canopy and groundcover) interception storage capacity (Bs) using observed responses of 
soil  moisture (θ) at the 15-cm sensor depth during rainfall events, with individual storms separated by at least 
72  hr to ensure both the canopy and groundcover interception storages were dry. Plot-specific relationships 
between θ and rainfall depth revealed clear rainfall thresholds necessary to induce a soil moisture response, which 
together with estimated evaporation and soil infiltration during the storm, represents Bs for each plot (Equation 
10 in Acharya et al., 2020). Plot-specific Bs values and daily precipitation were then used in a physically-based, 
continuous interception model developed by Liu (1997, 2001):.

𝐼𝐼 = 𝐵𝐵𝑠𝑠 (𝐷𝐷0 −𝐷𝐷) + ∫
𝑇𝑇

0

(1 −𝐷𝐷)𝐸𝐸 𝐸𝐸𝐸𝐸� (3)
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where I is interception, E is evaporation rate from wetted surfaces, and D0 and D are forest dryness index values 
at the beginning of a rain event and time T, calculated as:

𝐷𝐷 = 1 −
𝐶𝐶

𝐵𝐵𝑠𝑠

� (4)

where C is the “adherent storage” (water that does not drip to the ground), given by

𝐶𝐶 = 𝐵𝐵𝑠𝑠

(

1 −𝐷𝐷0exp

(

−
(1 − 𝜏𝜏)𝑃𝑃

𝐵𝐵𝑠𝑠

))

� (5)

where τ is the free throughfall coefficient. Interception at each time step, t, is then given by the numerical version 
of Equation 5, expressed as:

𝐼𝐼 = 𝐵𝐵𝑠𝑠 (𝐷𝐷𝑡𝑡−1 −𝐷𝐷𝑡𝑡) +
1

2
[𝐸𝐸𝑡𝑡−1 (1 −𝐷𝐷𝑡𝑡−1) + 𝐸𝐸𝑡𝑡 (1 −𝐷𝐷𝑡𝑡)]� (6)

Finally, the estimates of I given by Equation 6 were summed to obtain daily and annual interception losses from 
each plot. Further method details are in Acharya et al. (2020). We build on this work by relating annual intercep-
tion to stand structural attributes (i.e., LAI) and using estimated interception in our calculation of annual water 
yield.

2.6.  Water Yield

We determined annual water yield (Yw) as the difference between annual precipitation and annual ET (where ET 
is the sum of ETsoil and interception) and evaluated the bi-variate relationship of Yw with LAI as a first measure 
of management effects. We further developed a series of multivariate models with predictors including LAI, 
BA, GC, WT depth, and annual aridity index (PET:P) (Figure 1). We first considered plot identity as a random 
effect to account for replicated annual measurements. However, since our ultimate goal was a predictive model 
applicable in new locations based on measurable site and forest attributes, this approach was complemented using 
a fixed-effects general linear model (GLM) that omitted the plot effects. Site-level random effects were omitted 
in both models to ensure that effects of attributes such as aridity and groundwater depth could be estimated. We 
further compared models that used WT depth as a continuous variable (annual mean depth) with those using a 
binary variable (1 for deep WT sites and 0 for shallow WT sites). Because sites were selected from contrasting 
hydrogeologic settings (confined vs. unconfined aquifer), resulting groundwater depths were strongly bi-modal 
(Figure S3 in Supporting Information S1), supporting the use of the binary approach. Crucially, forward applica-
tion of any resulting model to new sites is substantially simplified using maps of aquifer confinement (i.e., binary 
depths) rather than relying on spatially distributed estimates of local WT depth (e.g., the USDA SSURGO soil 
survey), which we found to poorly represent water tables measured at our sites. We selected final models using 
the minimum Akaike Information criterion (AIC) and evaluated model performance using R 2 and root mean 
square error (RMSE). For the fixed-effects model assessment, we used a 10-fold cross-validation. All analyses 
were performed in R (v.4.0.2) (Team, 2020) using the nlme package for mixed effects model fitting, and the caret 
package for model cross-validation.

3.  Results
3.1.  Quantifying ETsoil

We observed a wide range of soil water loss rates (ETsoil) within and across plots and sites (Figure 2), with values 
consistently lower than PET (though we note that ETsoil does not include interception losses). Plot-scale daily 
ETsoil and PET were always positively correlated, but there was marked heterogeneity in fitted slopes among 
plots, even within the same site (Figure 2 shows data for two sites; similar plots are provided for the other three 
sites in Figures S7, S8, and S9 in Supporting Information S1). While the ETsoil:PET correlation at any given 
plot was modest (mean R 2 = 0.33; 0.03 ≤ R 2 0.56), the number of days for which ETsoil estimates were availa-
ble provides high confidence in the fitted slopes (range = 0.07–0.65; standard errors between 0.02 and 0.04 in 
Figure 2). As such, while there is uncertainty about ETsoil estimates on any given day, the broad, plot-specific 
patterns observed are remarkably stable and span a wide range of sensitivity to atmospheric conditions (i.e., the 
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range in fitted slopes). As further support of the validity of these ETsoil estimates, multiple regression models 
developed to gap-fill missing ETsoil data using PET and metrics of water availability (TSM, WT depth, 7-day 
antecedent precipitation) substantially outperformed (mean R 2 = 0.46; 0.22 ≤ R 2 0.67) models using PET alone 
(mean R 2 = 0.32, 0.04 ≤ R 2 0.55), helping to explain residuals in bivariate ETsoil versus PET relationships.

3.2.  Forest Structure Controls on ETsoil and Interception

Forest attributes varied at both site and plot levels (Table 1), providing meaningful gradients to assess structural 
controls on observed ETsoil. Both linear regression slopes (Figure 2) and plot-scale ETsoil:PET ratios (Figure 3a) 
exhibited consistently positive and highly predictive (i.e., slopes have low standard errors) associations with 
LAI. Specifically, we observed lower slopes in plots with lower LAI (Figure  2), yielding a moderate global 
ETsoil:PET versus LAI relationship across plots (R 2 = 0.41; Figure 3a). We focus on LAI as the dominant forest 
structural controls on ETsoil (Figure 3a), noting that despite strong covariance between plot LAI and BA (r = 0.81, 
p = < 0.001), using BA yielded a substantially weaker association with ETsoil:PET (R 2 = 0.22; p-value = 0.008). 
Annual interception loss ranged from 18.8 to 38.0 cm (Table 1) and, like ETsoil, were significantly associated with 
LAI (Figure 3b).

3.3.  Additional Forest Management Controls on ETsoil

A potential secondary control on ETsoil (and thus water yield) in southeastern pine forests is the use of prescribed 
fire for understory competition control and habitat improvement. While this study was not designed to investi-
gate fire effects directly, seven plots had low intensity, prescribed fires occur during the study period. At these 
plots, the change in ETsoil:PET between the month prior to the fire versus values one, two, and 3 months post-fire 

Figure 2.  Daily values of soil-moisture derived estimates of ETsoil versus potential evapotranspiration (PET) for two of five sites (6 plots each): (a) Deer Haven, where 
the regional karst aquifer is confined, resulting in a shallow surficial aquifer water table (WT) and (b) Econfina, where the regional aquifer is unconfined resulting in 
a far deeper WT. Plots within site are organized by leaf area index. The fitted slope (blue line) is shown with standard error estimates (± slope values, blue shading) to 
illustrate confidence in the ETsoil:PET relationship. Similar relationships for the other three sites area available at the associated repository.
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indicate a significant but small and short-lived fire effect (Figure 4a). Specif-
ically, 1-month post-fire ETsoil:PET values were significantly (p  <  0.001) 
reduced by an average of 8% across the seven sites compared to pre-fire 
values (range −18% to + 2%; standard deviation, SD = 6%). The effect was 
short-lived, however, with insignificant differences in ETsoil:PET values from 
pre-fire values in months 2 and three post-fire. As such, while there is a 
clear prescribed fire effect, the magnitude appears to be small and short-lived 
compared to natural variation  in ETsoil:PET.

Dominant pine species also varied across plots, allowing us to assess the 
influence of species on ETsoil. Our comparison of species effects was confined 
to two species (P. elliottii with 16 plots and P. palustris with 5 plots), with an 
additional category of “other pines” (including P. clausa with 2 plots and P. 
taeda with 2 plots). Results (Figure 4b) indicate considerable heterogeneity 
in the fitted slope between ETsoil:PET and LAI across plots with the same 
species, but with no significant differences among species. Linear slopes for 
slash pine (slope ± std. error = 0.071 ± 0.023) were marginally greater than 
for longleaf (0.067 ± 0.017) and other pines (0.065 ± 0.031). Overall, these 
data suggest that water yield variation with LAI is effectively uniform across 
pine species, at least at the scale of our measurements.

3.4.  Water Yield

Estimated Yw (cm yr −1) for each of the four study years and 30 plots illus-
trates substantial variation among sites (different colored bars), within sites 
(individual bars), and over time (comparing bars between years) (Figure 5a). 
We consistently observed the highest overall Yw at the EF site in the Florida 
panhandle and the lowest values at the DH site in the north-central peninsula. 
Climatic control on Yw was evident, with significant inter-annual variation 
within sites, particularly for the plots at the DH site, which in 2014 and 2017 
had far higher mean Yw (44 and 40 cm, respectively) in response to higher 
rainfall (150 and 136 cm, respectively), than in 2015 and 2016 (Yw of 19 and 
-7 cm, respectively) when annual rainfall of was lower (127 and 107 cm); the 
results for 2016, in particular, indicate net utilization of shallow groundwater.

Figure 3.  Extracted global associations between leaf area index and (a) 
ETsoil:PET and (b) annual interception loss. Both relationships are highly 
significant, albeit with clear site effects (plots are color coded by site).

Figure 4.  Summary of measured effects of (a) prescribed fire and (b) dominant pine species on variation in ETsoil:PET; error bars in both panels are 95% confidence 
intervals. We observed a significant decline (mean = 0.08, p < 0.001) in the month following prescribed fire (n = 7 sites), but no detectable longer-term effect. There 
was no significant difference in the fitted slope of ETsoil:PET versus leaf area index for any of the dominant pine species in the study.
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Plot-level variation in Yw was substantial and strongly linked to forest structure, with increased LAI predicting 
higher ETsoil and higher annual interception (Figure  3), resulting in lower Yw (Figure  5b). Concordantly, all 
candidate multivariate models used LAI as the most predictive forest structural attribute (as opposed to BA 
and understory cover). Table 2 summarizes the regression slopes for the LAI term in models with plot-level 
random effects and groundwater depth as a binary value (i.e., deep vs. shallow), indicating a 9.7 cm yr −1 decrease 

in Yw for each unit increase in LAI in the lowest AIC model. This model 
explained 93% of the extant variation in annual Yw across plots with a RMSE 
of 7.9  cm yr −1. In addition to LAI, this model also included main effects 
of aridity and groundwater depth, suggesting that Yw increases by approxi-
mately 17 cm yr −1 under deep WT conditions and decreases with increasing 
aridity, with a 17.8 cm yr −1 reduction for a 1-standard deviation increase in 
aridity (σaridity = 0.13). Models using continuous WT depth rather than binary 
depth had reduced performance (AIC values of 1000.5 vs. 995.1 for contin-
uous and binary groundwater models, respectively). This result, and the fact 
that binary groundwater depths are more readily available and applicable to 
new sites, supports use of binary groundwater depths for discussion of all 
subsequent results.

Model performance using the same structure (i.e., Yw ∼ LAI + GW + Arid) 
but without plot-level random effects (Table 3) resulted in negligible changes 
in regression parameters for all three variables, but reduced model good-
ness of fit (R 2 = 0.78; Figure 5c) and increased RMSE to 14.3 cm. Nota-
bly, however, 10-fold cross-validation yielded model performance that was 
scarcely reduced (mean R 2  =  0.76, mean RMSE  =  14.9), suggesting the 
model is stable and not overfitted, supporting Yw predictions at unmeasured 
locations.

Figure 5.  (a) Plot-wise water yield (Yw) estimates (cm yr −1) by year for the five sites during 2014–2017. The numbers above 
the bars are the annual rainfall amounts at each site. (b) Relationship between plot-scale Yw and leaf area index. (c) Scatter 
plot of observed Yw and model predictions (R 2 = 0.78, p < 0.001) from the general linear model (Table 3).

Model structure AIC
Fitted LAI slope (cm 

yr −1)
Model 

R 2

Yw ∼ LAI 1086.5 −12.1 0.65

Yw ∼ LAI + Arid 915.5 −11.0 0.92

Yw ∼ LAI + GW 1064.3 −10.0 0.63

Yw ∼ LAI + Arid + GW 900.6 −9.7 0.93

Yw ∼ LAI + Arid * GW 901.7 −9.7 0.94

Yw ∼ LAI + Arid + GW + GC 904.4 −10.6 0.93

Yw ∼ LAI + Arid + GW + BA 904.2 −10.3 0.93

Yw ∼ LAI + Arid + GW + SPP 903.3 −9.4 0.93

Note. Fitted LAI slopes are also provided. The selected model (bold) was 
chosen based on the lowest AIC, and interpretive simplicity.

Table 2 
Summary of Mixed Model (Including Plot-Level Random Effects) 
Performance With Predictors Including: Leaf Area Index, Aridity Index 
(Arid), Binary Groundwater Depth (1 – Deep, 0 – Shallow), Ground cover, 
Basal Area, and Dominant Pine Species
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4.  Discussion
Across ecosystems types, robustly quantifying ET is critical for understanding 
water balance components and guiding coupled water and natural resources 
management (Apsalyamova et al., 2015). In forests, this is challenging but 
central to improving our ability to predict changes in stand-scale water yield 
resulting from forest management activities and informing tradeoffs among 
forest product production and hydrologic services (Schwaiger et al., 2019). In 
this work, we overcome the limitations of current approaches for estimating 
ET and resulting water yield (coarse resolution, high expense) by collecting 
temporally and spatially dense in-situ data to produce simple, operationaliza-
ble models that appear to effectively predict water yield as a function of forest 
structure, hydrogeological setting, and climate (Figure 1).

4.1.  In-Situ ETsoil Measurements

In this work, we quantified ET losses across 30 forest stands by applying a soil moisture-based method (Nach-
abe et al., 2005) for daily ETsoil along with complementary interception measurements (Acharya et al., 2020). 
Compared to other methods, which can be prohibitively expensive (e.g., eddy covariance) or integrate over far 
larger scales (e.g., catchment water budgets), this approach quantifies ET variation at stand scales, enabling 
investigation across geographic, edaphic, and forest management gradients. While the inferential advantages of 
soil moisture-based ETsoil measurements are clear, a few methodological considerations merit discussion. First, 
soil moisture measurements are point-scale and thus require dense sensor instrumentation to capture variation 
with depth and across different stand locations. To capture this variation, we installed three soil profiles per plot, 
each with 5–6 sensors, yielding a total of 564 soil moisture sensors across the study, with attendant installation, 
acquisition, and data management challenges. We note that our study sites are dominated by fine sands, with rapid 
vertical and lateral soil moisture redistribution therefore expected. However, the degree to which we captured 
finer-scale variation in soil moisture dynamics (and thus correctly imputed plot-level ETsoil) remains unknown. 
This uncertainty and the associated need for even denser instrumentation in less conductive soils may complicate 
method application in other settings. Second, data gaps were common due to precipitation events, sensor failures, 
and WT depths that precluded soil moisture integration with our sensor discretization (e.g., <20 cm). However, 
strong relationships between ETsoil, climate (PET), and co-measured predictors of water availability supported 
successful gap-filling, which allowed for consistent, daily water yield quantification for summation to annual 
values. Finally, the method assumes that sensor measurements entirely bound the region from which water for ET 
is sourced; as such, the moisture conditions and temporal dynamics at the bottom sensor are of particular impor-
tance. In the supplemental information (Figures S4, S5, and S6 in Supporting Information S1), we show that this 
assumption was largely met in this study, with far higher and more stable soil moisture at the lowest sensor, even 
in settings where the WT was more than 5 m below ground. Further, while tap root depths in southeastern coastal 
plain systems can exceed 3m (Samuelson et al., 2017), the vast majority (ca. > 90%) of root biomass typically 
occurs within 1 m in our study systems (Domec et al., 2012; Van Rees & Comerford, 1986) and within 2 m in 
other global biomes (Schenk & Jackson, 2002).

Having met these methodological considerations, our high-frequency soil moisture measurements yielded ETsoil 
estimates that varied as expected across forest structure gradients (e.g., LAI) and generally aligned with climate 
drivers (i.e., PET and water availability). Under well-watered and standardized vegetation conditions, we would 
expect 1:1 correspondence between actual ET and PET (Irmak & Haman, 2003; Shoemaker & Sumner, 2006). 
Across a range of vegetation and moisture conditions, ET should at least be strongly positively correlated with 
PET, with departure from 1:1 correspondence driven by a combination of water availability (Jung et al., 2010; 
Wetzel & Chang, 1987) and plant structural properties (Baldocchi et al., 2004; Li et al., 2016). This aligns with 
our expectations that at all experimental plots, relationships between ETsoil and PET were positive and statistically 
significant (p < 0.05, Figure 2). All fitted slopes were <1 (i.e., ETsoil < PET), with nearly all daily data falling 
below the 1:1 line, but we note that ETsoil does not include canopy interception (and subsequent evaporation) and 
thus does not represent total ET. Multiple regression models including both PET and water availability metrics 
were better predictors of ETsoil, highlighting the short (PET) and medium (total soil moisture) time scales over 
which climate controls ETsoil and further supporting the viability of ETsoil estimates from soil moisture dynamics.

Variables Estimate Std. Error t-value Pr(>|t|)

Intercept 197.6 10.8 18.3 <0.0001

PET:P −137.2 10.1 −13.6 <0.0001

LAI −9.7 1.2 −8.1 <0.0001

GW 16.8 2.8 6.0 <0.0001

Note. Model null deviance is 94456 (df = 119), with residual deviance of 
20809 (df = 116), indicating 78% of null deviance is explained.

Table 3 
General Linear Model of Water Yield (Yw in cm yr −1) as a Function of 
Aridity Index (PET:P), Leaf Area Index, and Groundwater Depth (1 – Deep, 
0 – Shallow) Without Plot-Level Random Effects
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As expected, we found that forest structure strongly influenced the relationship between ETsoil and PET. While 
consistently positive associations suggest our ETsoil estimates broadly reflect climatic conditions, PET alone 
explained only between 3% and 55% of estimated ETsoil variance and was worst in low LAI plots (e.g., 1 through 
4 at EF, all with LAI < 1.0; Figure 2). In addition to the low R 2 values, those sites also exhibited shallow slopes, 
suggesting ETsoil is relatively invariant to changing PET values in low biomass plots. In contrast, for plots with 
LAI > 1.0, the relationship between ETsoil and PET was stronger (mean R 2 = 0.36.) and better aligned with liter-
ature values from forested watersheds in the southeastern US. For example, Lu et al. (2005) observed PET versus 
ET correlations (from a watershed mass balance) between 0.57 and 0.65 (i.e., R 2 from 0.32 to 0.42) depending 
on the PET model used. Broad alignment of ET and PET associations across disparate studies and methods 
underscores the utility of the Nachabe et al. (2005) method, particularly where variability at intermediate spatial 
scales is of interest.

4.2.  Leaf Area Index Predicts ETsoil, Interception, and Water Yield

Leaf area index (LAI) was the most important forest attribute for predicting stand-scale water balances, explaining 
41%, 46%, and 30% of the variance in ETsoil:PET, interception, and water yield, respectively (Figures 3 and 5b). 
While other forest attributes covaried with LAI (e.g., r = +0.81 with BA, r = −0.53 for groundcover), LAI was 
consistently the strongest predictor of the stand water balance. Further, we observed consistent ETsoil:PET versus 
LAI associations across all pine species, suggesting that species replacement (e.g., loblolly to longleaf restora-
tion) without attendant LAI reductions are unlikely to result in significant water yield improvements. Our results 
align with many studies identifying LAI as the best predictor (along with climate (Edwards & Troendle, 2012)) 
of forest water use and yield. For example, McLaughlin et al. (2013) found LAI explained 53% of the variance in 
ET:annual precipitation in southeastern US pine forests, Del Grosso et al. (2018) found remotely sensed Normal-
ized Difference Vegetation Index (which strongly covaries with LAI (Q. Wang et al., 2005)) explained 50%–52% 
of observed variability in daily ET in shortgrass steppe, and Sun, Alstad et  al.  (2011) found LAI to be the 
strongest predictor of monthly ET across a diversity of ecosystems in the US, China, and Australia. As such, our 
stand-scale, empirical results align with expectations of the structural drivers of water yield and further support 
the long-standing contention (e.g., Bosch & Hewlett, 1982) that forest structure management (via LAI changes) 
can impact water yield at local scales.

The importance of LAI in controlling ETsoil and interception (and, by extension, water yield) follows from the role 
of leaf surfaces as the primary exchange site between forests and the atmosphere (Vose et al., 1994) and as tempo-
rary storage for incoming precipitation (Savenije, 2004). While LAI emerges as the keystone forest attribute for 
understanding stand water use, foresters rarely measure it, often relying on BA, density, and stand age to charac-
terize structure (Van Laar & Akça, 2007). This gap highlights the utility of allometric relationships between BA 
and LAI for specific forest types (C. Gonzalez-Benecke et al., 2014), as well as satellite or LIDAR remote sensing 
to accurately reproduce field-measured LAI (Blinn et al., 2019; Kinane et al., 2021). For example, the Moderate 
Resolution Imaging Spectroradiometer provides global LAI estimates every 1–2 days at 500 m spatial resolution, 
and Landsat produces LAI every 16 days at 30-m resolution (Blinn et al., 2019). At smaller scales, LIDAR-de-
rived estimates of LAI are reliable and can be used to monitor within- and between-stand variation (Almeida 
et al., 2019), which are critical for robust predictions of landscape water yield. Large-scale, dynamic surveillance 
of this key attribute is integral to quantitatively monitoring changes in ET and water yield over time. Given the 
strong mechanistic connection and empirical relationship between LAI and water yield, remotely sensed LAI is 
likely to serve as the key tool for low-cost validation of payment-for-ecosystem service programs that compensate 
forest landowners for “enhancing” water yield in lieu of maximum timber production.

4.3.  Temporal and Spatial Variance in Water Yield

Our field measurements and models offer insight into temporal and spatial variation in pine forest water yield. 
We observed substantial inter-annual variation in water yield in response to climatic variability. Plot-specific 
water yields varied by as much as 60 cm over the 4-year study (mean range = 38 cm, mean temporal CV = 0.48), 
primarily in response to annual rainfall variation (mean temporal CV = 0.11), since plot level PET was effectively 
constant (mean temporal CV = 0.04). For example, at the DH site, where water yield was consistently low, five 
of the six plot values were negative in the driest year (2016; Figure 5a). Forest structure and thus LAI controls 
on water yield can also be temporally dynamic particularly in plantation rotations (C. A. Gonzalez-Benecke 
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et al., 2012), although LAI was relatively stable during our 4-year study (mean plot CV = 0.15). In addition to 
stand development, fires that alter canopy structure can also influence the temporal trajectory of LAI, and thus 
water yield. In this work, we only assessed effects of prescribed fire aimed at reducing understory biomass and 
tree regeneration (and thus maintaining low LAI) in stands for which fire frequency was already high (e.g., every 
2–5 years). The modest and short-duration declines in post-fire ETsoil:PET (Figure 3) suggest minor LAI losses 
and rapid recovery. While temporal variability in LAI was thus minimal during our study period, clear associa-
tions between water yield and LAI indicate the potential water yield changes with time following management 
actions that increase (e.g., via rotation age, decreased fire frequency) or reduce (e.g., via thinning, increased fire 
frequency) forest biomass.

Spatial variation in the landscape controls on water yield are crucial elements of regional and larger-scale predic-
tions. For example, despite the geographic proximity of our sites, aridity variation was relevant, with site means 
varying between 0.94 and 1.09. Indeed, spatial variation in aridity between sites (CV = 0.11) was of comparable 
magnitude to the temporal variation within sites (CV = 0.13), underscoring the importance of both sources of 
variability for water yield predictions. A further source of spatial variation across our sites was hydrogeologic 
setting, which operationally represents groundwater depth. This factor, treated as a binary variable (i.e., “deep” 
where the Floridan aquifer is unconfined, and “shallow” where a surficial aquifer is perched on a confining unit) 
exerted strong influence on the magnitude of water yield, with model estimates indicating 17 cm greater water 
yield in unconfined settings. This aligns with known patterns of recharge across the state (Phelps, 1984) and 
illustrates the important role that shallow WT conditions play in supplying phreatic water to support primary 
production in Florida's sandy soils (Sun et al., 1998). Notably, the combined regional variation in aridity and WT 
depth was larger than the effects of LAI on water yield; the standardized slope (i.e., fitted slope divided by the 
variable's standard deviation) is 18 cm for aridity, but only 10 for LAI. This implies that intrinsic site attributes 
are the dominant control on the magnitude of water yield. However, because LAI can be managed (and because 
interaction effects among LAI and other variables did not improve model fit), forest structure modification is a 
crucial—and independent—water yield control.

4.4.  Predicting and Managing Forest Water Yield

Strong empirical associations between water yield and a small number of site-level variables allow us to make 
robust predictions across the varying hydrogeologic, edaphic, and forest structural attributes of our study sites, 
and over time with dynamic climate conditions. While including plot-level random effects improves model 
performance (R 2 = 0.93, AIC = 900.6) over the more general model (R 2 = 0.78, AIC = 969.2), it does so at the 
expense of model generality and use for forward-looking management applications. Specifically, coupling widely 
available climate and hydrogeology data with field measured or remotely sensed LAI data can enable short- and 
long-term predictions of water yield across our study region. Forward model applications include scenario analy-
ses to predict changes in water yield with different forest management activities, short-term climate variation, and 
long-term climate change at spatial scales from forest stands to large watersheds. In the southeastern US and other 
regions facing increasing water shortages (Anandhi & Bentley, 2018; Sun, 2013), such region-specific models 
are critical for supporting water supply planning activities (Douglass, 1983) and the development and implemen-
tation of policy instruments that incentivize water yield as an important forest product (Bawa & Dwivedi, 2021; 
Susaeta et al., 2016, 2017). While coarser watershed and continental-scale models exist (e.g., the Water Supply 
Stress Index Model, WaSSI (Sun, Caldwell, et al., 2011)) and similarly offer estimates of water yield change with 
land use and climate scenarios, empirical predictions from in-situ observations are important for supporting and 
validating more region- and ecosystem-specific models. Still, our modeled stand-level water yield responses to 
lower LAI may be higher than cumulative watershed effects due to potential damping of water yield signals at 
larger scales via increased internal storage or enhanced ET in other watershed locations. Further work to connect 
stand-level measurements to watershed-scale responses, including internal storage dynamics, may be necessary 
to ultimately validate the predictions made here and ensure that forest management incentives created for water 
supply planning are based on achievable and verifiable water yield gains.

Forest management contributions to sustainable water supply planning are complicated by population growth 
(Zwick & Carr, 2006), agricultural intensification (S. J. Lawrence, 2016), and increasing global demand for wood 
and forest bioenergy products (Galik & Abt, 2016; McNichol et al., 2019). Projected climate change will exacer-
bate these stressors and further threaten regional water sustainability. Precipitation projections for the southeast 
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are uncertain (Kunkel et al., 2013), but include more extremes (droughts, large storms) and an overall decrease 
in annual rainfall, particularly during summer (Konrad & Fuhrmann, 2013). Meanwhile, mean annual tempera-
tures are projected to rise, increasing ET and decreasing “available precipitation” (Sun, McNulty, et al., 2008). 
Recent estimates indicate ET increases of ca. 10% from 2003 to 2019, with concordant decreases in water yield 
(Pascolini-Campbell et al., 2021), further highlighting increasingly difficult tradeoffs among food, energy, and 
water resources (W. Wang et al., 2015).

The relatively simple model developed here is useful for evaluating wood-water tradeoffs in the context of other 
competing water uses and economic considerations. Managing tradeoffs is increasingly part of the water supply 
planning arena (Hallema et al., 2019; Melo et al., 2021; Willaarts, 2012). Critically, programs that incentivize 
forest management for increased water yield (Douglass, 1983) may simultaneously meet other environmental 
objectives that require lowered forest density (e.g., endangered species habitat, diversity enhancements). Crucial 
to these efforts are operational models of water yield that provide robust scenario predictions, but also fair and 
equitable water yield pricing structures and careful program development to ensure a viable forest industry in the 
southeastern US and more broadly. The empirical models developed here are an important step in this integrated 
landscape planning, and the methods used to arrive at these models may be applicable to other regions.

Data Availability Statement
Raw data, ETsoil graphs for all sites, maps and photographs of the selected sites, and plots of ancillary time series 
can be found at http://www.hydroshare.org/resource/a55dfb0494864847b735e3c65ee0caf8.
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