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ABSTRACT

Forests play a critical role in the hydrologic cycle, impacting the surface and groundwater dynamics of water-
sheds through transpiration, interception, shading, and modification of the atmospheric boundary layer. It is
therefore critical that forest dynamics are adequately represented in watershed models, such as the widely ap-
plied Soil and Water Assessment Tool (SWAT). SWAT'’s default parameterization generally produces unrealistic
forest growth predictions, which we address here through an improved representation of forest dynamics
using species-specific re-parameterizations. We applied this methodology to the two dominant pine species in
the southeastern U.S., loblolly pine (Pinus taeda L.) and slash pine (Pinus elliotti). Specifically, we replaced unre-
alistic parameter values related to tree growth with physically meaningful parameters derived from publicly
available remote-sensing products, field measurements, published literature, and expert knowledge. Outputs
of the default and re-parameterized models were compared at four pine plantation sites across a range of man-
agement, soil, and climate conditions. Results were validated against MODIS-derived leaf area index (LAI) and
evapotranspiration (ET), as well as field observations of total biomass. The re-parameterized model
outperformed the default model in simulating LAI, biomass accumulation, and ET at all sites. The two parametri-
zations also resulted in substantially different mean annual water budgets for all sites, with reductions in water
yield ranging from 13 to 45% under the new parameterization, highlighting the importance of properly
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parameterizing forest dynamics in watershed models. Importantly, our re-parameterization methodology does
not require alteration to the SWAT code, allowing it to be readily adapted and applied in ongoing and future wa-

tershed modeling studies.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Forests play a critical role in the terrestrial water balance, greatly
impacting both blue water (i.e., surface and groundwater that can be di-
rectly accessed and used for human needs) and green water (i.e., water
stored in unsaturated soil layers and the plant canopy) (Falkenmark and
Rockstréom, 2006; Naderi, 2020; Veettil and Mishra, 2016). Forests influ-
ence surface and groundwater dynamics by mediating transpiration
(Bearup et al., 2014; Federer, 1973; Roberts, 1983), interception (Carlyle-
Moses and Gash, 2011; Crockford and Richardson, 2000; Savenije, 2004),
shading (Johnson and Wilby, 2015; Raz-Yaseef et al., 2010), and modifica-
tion of the atmospheric boundary layer (De Kauwe et al,, 2017; Leigh et al,,
2017; Timouk et al., 2009). These processes are strongly coupled, making
quantitative predictions about the hydrological impacts of forests and for-
est change a complex task, usually requiring a combination of field studies
and modeling approaches (Golden et al,, 2016).

Hydrologic models allow for the prediction of hydrologic responses of
forested watersheds under different climates, land covers, or soil condi-
tions than those experienced through field-scale measurements (Golden
et al, 2016). Additionally, hydrologic models can be used to scale up re-
sults from field measurements to make predictions at the watershed or
regional scale (Wattenbach et al., 2005). Conversely, field measurements
can provide valuable information to improve the representation of funda-
mental forest dynamics in hydrological models, such as the temporal var-
iability of forest leaf area index (LAI) and biomass (Guo et al., 2015).
Overall, combining field measurements and process-based hydrological
models enhance both approaches, and many authors have pursued
data-model integration to investigate hydrological processes at the forest
and watershed scales. For example, Saleh et al. (2004) modified the
process-based Agricultural Policy/Environmental eXtender (APEX)
model (Williams et al., 2008) to improve estimations of flow, sediment,
and nutrient losses from silvicultural lands in Texas; liames et al. (2018)
applied the United States Department of Agriculture (USDA) Environ-
mental Policy Integrated Climate (EPIC) model (Williams, 1990) to esti-
mate LAI at four mixed-forest stands in Virginia and North Carolina; and
Amatya and Skaggs (2001) applied the field-scale DRAINMOD (Skaggs,
1978) model to predict daily water table height in experimental water-
sheds located on a loblolly pine (Pinus taeda L.) plantation in North Caro-
lina. Although based on physical principles and processes, hydrologic
models such as APEX, EPIC, and DRAINMOD are appropriate only at plot
or stand scale, since they are not designed to handle the landscape hetero-
geneities (e.g., varying soil properties, land-use/land-cover types, terrain
topography) of larger areas such as watersheds and basins.

To evaluate forest hydrological processes at a larger scale
(e.g., regional), watershed-scale hydrologic models are needed to
account for the spatial variability in stand species, soil, and climate.
One such watershed-scale model is the Soil and Water Assessment
Tool (SWAT) (Arnold et al., 1998). SWAT is a popular semi-distributed
process-based watershed model that has been used for a wide range
of applications worldwide (Gassman et al., 2004) and is cited in over
4000 peer-reviewed journal articles as of December 31, 2021 (https://
www.card.iastate.edu/swat_articles/). In particular, SWAT has been ex-
tensively applied for improving and evaluating crop yield simulation
(Cibin et al., 2016; Karki et al., 2019; Mittelstet, 2015; Nair et al., 2011;
Srinivasan et al.,, 2010; Trybula et al., 2015; Wang et al., 2015; Rath
et al,, 2021), as it is capable of simulating varying land-management
practices such as fertilizer application, irrigation, biomass harvest, and
crop rotation. With these capabilities, in principle, SWAT is suitable for

simulating both managed and unmanaged forests. However, the plant
growth model within SWAT was developed primarily to simulate an-
nual crop growth (Williams et al., 1989) and has not been sufficiently
tested in forested ecosystems (Amatya and Jha, 2011; Yang et al.,
2019). As a result, the default parameterization of forests in SWAT's
plant database produces unrealistic dynamics (Yang and Zhang, 2016).

Given the expansive use of SWAT in the hydrological community, the
known limitations of SWAT's default forest parameterization, and the
integral role of forests in surface and groundwater dynamics of water-
sheds, there is a significant need for a methodology to re-parameterize
the SWAT plant database so that hydrological impacts of forests and for-
est management are adequately represented. Since the tree species
comprising forests around the world have a diverse array of biological
and growth characteristics (Chisholm et al., 2014; Kattge et al., 2011;
Reich, 2005), this re-parameterization methodology should be species-
specific, focusing on the most important trees species within a given wa-
tershed. In this study, we developed a general re-parameterization
methodology and applied it to the two dominant pine forest species in
the Southeastern U.S. (SE-US): loblolly pine (Pinus taeda L.) and slash
pine (Pinus elliottii Engelm.). Our methodology was validated against
MODIS-estimated LAl and ET data and tree biomass accrual data from
three forest research cooperatives across the SE-US.

2. Background

2.1. Limitations of current forest representation and parameterization in
SWAT

SWAT (Arnold et al., 1998) was developed by the USDA Agricultural
Research Service (ARS) and major model components include weather,
hydrology, plant growth, water quality, and land management. SWAT
was originally developed for the prediction of the long-term impact of
rural and agricultural management practices on water, sediment, and nu-
trients in large, complex watersheds with varying soils, land use, and
management conditions. SWAT delineates a watershed into multiple sub-
basins based on drainage areas of tributaries. Within each subbasin, Hy-
drologic Response Units (HRUs) are created from unique combinations
of land use, soil, and topography (Neitsch et al., 2011). HRU's are the
smallest computational unit in SWAT and most of the land phase pro-
cesses in SWAT, including vegetation growth, are simulated at this level.

SWAT simulates dynamics of the following forest structures and pro-
cesses: canopy LAI, stand biomass, canopy height, leaf litter and residue
production, and root mass distribution. Within SWAT, plant growth dy-
namics are modeled using a simplified version of EPIC (Williams, 1990),
which is primarily governed by heat unit theory (Boswell, 1926;
Magoon and Culpepper, 1932). As such, intra-annual forest dynamics
are simulated based on daily accumulated heat units under optimal con-
ditions (Neitsch et al., 2011). Inter-annual dynamics are additionally
controlled by the age of the forest stand, where the maximum develop-
ment in certain forest processes is limited to a fixed amount determined
by forest maturity. Each of the forest growth processes within SWAT is
interdependent with one or more other processes. This coupling leads
to feedbacks between processes and nonlinear responses to changes
in model parameters. Specific relationships and parameters describing
the key forest processes simulated in SWAT are summarized in
Section S1.1 of the supplementary materials (Appendix C).

Forests and hydrology are connected in SWAT through the processes
of interception, shading of the soil surface, evapotranspiration, and
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modification of the atmospheric boundary layer. Each of these processes
depends on specific variables describing forest structural dynamics
(e.g., tree height, LAI, belowground biomass). In some cases, these de-
pendencies are very sensitive, meaning relatively small changes in for-
est structure induce large changes in hydrological dynamics. The
specifics of the interdependencies and relevant parameters for all
coupled forest/hydrological processes are summarized in Section S1.2
of the supplementary materials (Appendix C).

SWAT utilizes several parameters to control the many aspects of forest
dynamics (see Section 1.1 in the Supplementary Materials under Appen-
dix C), each of which must be assigned a specific value. Many of the default
values of SWAT forest parameters were not defined using empirical data
(Arnold et al., 2011), leading some to have unrealistic values (Yang and
Zhang, 2016) that do not adequately reproduce the growth and dynamics
of forests. A few specific examples (further detailed in Section S1.3 of the
Supplementary Materials under Appendix C) include the following: 1) ex-
cessively high biomass converted annually to soil residue; 2) very general-
ized categorization of forest variation (limited to evergreen, deciduous,
and mixed forests); and 3) poor representation of the growth and dynam-
ics of juvenile trees. While these are just three (of many) examples of
SWAT process limitations, they help illustrate how forest structure misrep-
resentation can lead to challenges in accurately simulating stand-scale and
watershed hydrology.

2.2. Application case: loblolly and slash pine forests of the SE-US

We chose loblolly and slash pines of the SE-US as test case species for
this re-parameterization because of their commercial relevance to both
the U.S. and global wood supply (Susaeta et al., 2014), the large area
over which they are planted (Barnett and Sheffield, 2004; Baker and
Langdon, 2016), the data available for calibration and validation, and
the empirical evidence that these two species can have substantial
impacts on the hydrology of the catchments in which they grow
(McLaughlin et al., 2013). Loblolly pine is considered to be the most im-
portant commercial tree species in the world (Will et al., 2015) and is
the most commonly planted tree species in the U.S., covering approxi-
mately 13 million ha. This species is concentrated in the SE-US, compris-
ing 84% of all seedlings planted in the region. Slash pine is the second
most cultivated tree species in this region and has been planted on
more than 4.2 million ha (Gonzalez-Benecke et al., 2014a). These two
species are a large fraction of the SE-US wood product output, which ac-
counts for approximately 60% of the total U.S. timber and about 18% of
the global supply of industrial wood (Gonzalez-Benecke et al.,, 2014a).

Due to their commercial importance, the growth dynamics of slash and
loblolly pine within the SE-US have been extensively studied. Therefore,
there are a substantial amount of relatively long-term stand-scale data
available for both species, which can be leveraged to re-parameterize
SWAT. Increasingly, the hydrologic impacts of slash and loblolly pine plan-
tations are being recognized and studied. For example, McLaughlin et al.
(2013) found that cumulative water yield in pine stands managed for a
low basal area can be up to 64% higher than in high-density timber stands
over a 25-year rotation. This nexus of commercial importance, wide
geographic extent, data availability, and known hydrological impacts
make slash and loblolly pine ideal test case species for improving the rep-
resentation of forest dynamics in hydrologic models. Additional details
pertaining to the natural history of loblolly and slash pine, their use in
commercial plantations, and their impacts on catchment hydrology can
be found in Section S1.4 of the Supplementary Materials (Appendix C).

3. Methods and data
3.1. Re-parameterization and calibration strategies
Here we outline a method of implementing a re-calibration of im-

portant forest parameters for loblolly and slash pine in SWAT. While
we only address these two species, the methodology applies to most
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forest species and can be applied broadly. We start by adding two new
plant types in SWAT's plant database: loblolly pine (LBPN) and slash
pine (SLPN). The acronyms LBPN and SLPN were chosen by the authors
for the sake of clarity, although it is worth highlighting that the USDA's
standard codes for loblolly and slash pine are PITA and PIEL, respectively
(https://plants.usda.gov/home). Initially, we parameterized these forest
types with default values from SWAT evergreen forests (FRSE). Subse-
quent parameter modifications and calibration were conducted on the
newly added LBPN and SLPN, leaving FRSE with its default values.

Next, we inventoried all user-defined forest parameters within
SWAT related to processes that impact either forest dynamics or the in-
teractions between forest and hydrological dynamics. These parameters
were identified from SWAT theoretical and input/output documenta-
tion (Neitsch etal.,2011) and are related to one or more of the following
forest structural properties or processes: canopy LAI, stand biomass,
canopy height, leaf litter and residue production, root mass distribution,
interception, shading of the soil surface, evapotranspiration, and modi-
fication of the atmospheric boundary layer. Parameter definitions and
the primary processes they relate to are given in Table 1.

To conduct a robust calibration of the parameters in Table 1, we next
identified the largest possible set of constraining information corre-
sponding to each parameter. Ideally, this information would consist of
high temporal and spatial resolution measurements of the forest and
hydrological dynamics impacted by relevant parameters (e.g., canopy
LAI, stand biomass, evapotranspiration, etc.). However, this type of
data is often not available for all relevant parameters. In such cases,
lower-resolution data, published literature, and expert knowledge can
be used to constrain a calibration. In this study, constraining informa-
tion consisted of stand-scale field measurements, remote-sensing data
products, published literature values, and expert knowledge (summa-
rized in Table 2). These constraints allowed us to define a plausible
range of values that each relevant parameter could take for both loblolly
and slash pine, which diverged substantially from the default values
(Table 2). Parameter range selection is further detailed in Section S1.5
of the Supplementary Materials (Appendix C), and details about the
specific datasets utilized are provided in Section 3.2 of the main text
and Section S1.6 of the Supplementary Materials (Appendix C).

With relevant model parameters and relevant ranges selected, we
then calibrated the model to the data summarized in Table 2. Based on
our understanding of SWAT's plant growth module and how forest pro-
cesses interact with hydrological computations in the model, we con-
tend that LAI, biomass, and ET must be calibrated sequentially based
on their specific interactions in SWAT. As an example, LAI on the first
day of simulation is the minimum LAI in the plant database. LAl is then
used directly in the computation of plant biomass increment, and
along with rooting depth, partitions evapotranspiration between canopy
evaporation and transpiration. Specifically, LAl-related parameters con-
trolling the shape of the LAI curve and the length of the growing season
were calibrated first and then held constant while biomass-related pa-
rameters were calibrated. Finally, both LAI- and biomass-related param-
eters were held constant while ET-related parameters were calibrated.

The calibration procedure was conducted using the automated
Sequential Uncertainty Fitting — SUFI-2 calibration algorithm (Abbaspour
et al., 2004) within SWAT Calibration and Uncertainty Program (SWAT-
CUP 2019, version 5.2.1.) software (Abbaspour, 2015). We chose the
SUFI-2 algorithm because it is the most frequently used method for
SWAT applications (Malik et al., 2021) and has shown superior perfor-
mance over other algorithms like GLUE and ParaSol (Shivhare et al.,
2018). The plausible parameter ranges provided in Table 2 were used to
define uniform sampling distributions for each parameter. For each
sequential calibration, SUFI-2 drew 500 samples from the plausible param-
eter ranges and ran SWAT for each parameter combination. The resulting
model outputs were used to perform a global sensitivity analysis to
determine the relative importance of the inventoried parameters in simu-
lating LAl biomass, and ET. Parameter importance was quantified at a sig-
nificance level of 0.05 (i.e., a p-value < 0.05 indicated a significant
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Table 1
Inventory of identified user-defined forest parameters which impact watershed hydrological processes. Abbreviations: CL - canopy LA SB - stand biomass, CH - canopy height, LL - leaf
litter and residue production, RD - root mass distribution, SS - shading of soil surface, ET - evapotranspiration, IN - interception, and AB - modification of atmospheric boundary layer.

SWAT parameter Parameter definition Primary impacted forest Primary impacted hydrological

(units) processes processes

FRGRW1 1st point on LAI development curve x-coordinate CL ET, IN

LAIMX1 1st point on LAl development curve y-coordinate CL ET, IN

FRGRW2 2nd point on LAI development curve x-coordinate CL ET, IN

LAIMX2 2nd point on LAI development curve y-coordinate CL ET, IN

DILAI Fraction of growing season when LAI senescence begins CL ET, IN

HEAT_UNITS Potential heat units to reach maturity in a growing season CL ET, IN

EPCO Plant water uptake compensation factor RD ET

MAT_YRS (years) Years to forest maturity CL, SB, CH ET, IN, SS, AB

CURYR_MAT (years) Current age of forest CL, SB, CH ET, IN, SS, AB

ESCO Soil evaporation compensation factor _ ET

BIO_E ((kg/ha)/(M]/m?)) Radiation use efficiency SB SS, ET

RDMX (m) Maximum rooting depth RD ET

T_OPT (Celsius) Optimal growth temperature CL, SB ET, SS

T_BASE (Celsius) Minimum temperature required for growth CL, SB ET, SS

GSI (m/s) Maximum stomatal conductance _ ET

VPDEFR (kPa) Determines slope of relationship between stomatal SB ET
conductance and vapor pressure deficit

EXT_COEF Light extinction coefficient SB SS, ET

CANMX (mm) Maximum canopy storage _ IN, ET

CHTMX (m) Maximum canopy height of forest CH AB, ET

BIO_LEAF Fraction of biomass LL SS,ET

BMX_TREES (tons/ha) Maximum possible stand biomass SB SS, ET

BLAI (m?/m? Maximum possible canopy LAI CL ET, SS

ALAI_MIN (m?/m? Minimum possible canopy LAI CL ET, SS

parameter), and results are summarized in Tables S2-S5 in the Supple-
mentary Materials (Appendix B).

3.2. Calibration datasets and study sites

Five primary datasets were used in our parameterization of loblolly
and slash pine in SWAT. The first two datasets were long-term forest

stand measurements of above-ground biomass from productivity stud-
ies of loblolly pine (Gonzalez-Benecke et al., 2016) and slash pine
(Gonzalez-Benecke et al., 2014b). The second two datasets were re-
motely sensed LAl and ET data products from NASA's Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) mission. The final dataset
consisted of root mass distribution data for loblolly and slash pine
from the Managing Forests for Increased Regional Water Availability

Table 2
Constraining information and plausible value ranges for SWAT user-defined forest parameters which impact watershed hydrological processes.
Parameterization data source Parameter (units) Default Plausible value/range - loblolly Plausible value/range - slash Reference
value®  pine pine

Remote sensing (MODIS MCD15A3H dataset) FRGRW1 0.15 - ** _
LAIMX1 0.7 ** h _
FRGRW2 0.25 - - _
LAIMX2 0.99 o - _
DLAI 0.99 - h -
HEAT_UNITS 1800 - _
BLAI (m?/m? 5 - ** _
ALAI_MIN (m?/m? 0.75 = ** _

Expert knowledge ™" MAT_YRS (years) 30 3-5 3-5 _
CURYR_MAT (years) _ 1 1 _
ESCO 0.95 0.8-1 0.8-1 _

Literature review BIO_E ((kg/ha)/(M]J/m?)) 15 2.5-11.6 2.7-12.6 1234
RDMX (m) 35 1.5-3 1.6-33 5,6,7,8,9,20
T_OPT (Celsius) 30 25 25 10,11
T_BASE (Celsius) 0 4 5 10,11
GSI (m/s) 0.002 0-0.0118 0-0.036 12,11,2,13,14,15,21
VPDFR (kPa) 4 0.7-3.7 1-3.5 13,15,16,22
EXT_COEF 0.65 0.41-0.69 0.46-0.715 1,11,17,18
CANMX (mm, % of total rainfall) 0 0.5-1.8 mm, 14-28% 0.5-1.8 mm, 14-28% 19
CHTMX (m) 10 7-18 8.5-19.8 5
BIO_LEAF 0.3 0.02 0.02 23

Field observations BMX_TREES (tons/ha) 1000 185-200 113-200 24,25
EPCO 1 0.48 0.38 26

References: 1: (Schultz, 1997); 2: (Roth, 2010); 3: (Pell, 2015); 4: (Allen et al., 2005); 5: (Martin and Jokela, 2004); 6: (Schenk and Jackson, 2002); 7: (Torreano and Morris, 1998); 8: (Qi
etal., 2018); 9: (Albaugh et al., 2006); 10: (Gonzalez-Benecke et al., 2014b); 11: (Gonzalez-Benecke et al., 2016); 12: (Samuelson et al,, 2012); 13: (Wightman et al., 2016); 14: (Aspinwall
etal,2011); 15: (Bartkowiak et al., 2015); 16: (Bracho et al., 2018); 17: (Sampson and Allen, 1998); 18: (White et al.,2000); 19: (Gavazzi et al.,, 2016); 20: (Rees and Comerford, 1986); 21:
(Johnson et al., 1995); 22: (Teskey et al., 1994); 23: (Poorter et al., 2012), 24: (Bracho et al., 2012); 25: (Jokela and Martin, 2000); 26: (Cohen et al., 2018).
* The default parameter values refer to the forest type Evergreen Forests (FRSE) in SWAT's plant database.
** Plausible ranges of parameters governing the shape of the LAI curve are site-specific and depend on MODIS-derived data.

** We spoke with William Harges, a former employee at the Southern Forest Nursery Management Cooperative, and Dr. Lisa Samuelson, a retired faculty at the School of Forestry &
Wildlife Sciences at Auburn University, about reasonable values of MAT_YRS (the number of years required for a pine tree to transition for a seed to a sapling).
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project (Cohen et al., 2018). Specific details for each of these datasets
can be found in Section S1.6 of the supplementary materials (Appendix
C). It is worth mentioning that there are uncertainties related to the
MODIS ET (Mu et al., 2013) and LAI (Jensen et al., 2011) algorithms.
Thus, the use of MODIS estimates as benchmark data must be
interpreted with caution.

The remote-sensing and biomass accrual datasets described above
were associated with pine plantation stands administered by three for-
estry cooperatives across the SE-US. Based on data availability, planted
species, and spatial distribution, four sites were selected to test our
methodology. Three of the sites consisted of loblolly pine plantations
and are located in Alabama (AL) (Loblolly 1 - AL), Georgia (GA) (Loblolly
2 - GA), and Florida (FL) (Loblolly 3 - FL) (Fig. 1). The fourth site, a slash
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pine plantation, is located in FL (Slash - FL), approximately 4 km from
Loblolly 3 - FL. Characteristics of each site are summarized in Table 3,
and detailed descriptions are presented in Section S1.7 of the Supple-
mentary Materials (Appendix C).

3.3. Model setup and calibration

The information in Table 4 was used to develop and set up field-scale
SWAT models representing each of the study sites using SWAT2012 (re-
vision 664). Since the standard SWAT HRU definition provides no
means for representing realistic field-scale management strategies
(e.g., forest plots might spread across several HRUs), we employed the
approach described by Marek et al. (2016) to delineate meaningful

Loblolly 4 - AL

Alabama )
Georgia
Loblolly 2 - GA \
{
i)
B
-
P Loblolly 3 - FL
™ . Slash -\FL
0 95 190 380 km N
L I I 1 | L l I J
Florida 2\
Legend 1

@® Loblolly pine sites
B Slash pine sites
US Physiographic Regions
APPALACHIAN HIGHLANDS
ATLANTIC PLAIN
INTERIOR PLAINS

Fig. 1. Spatial distribution and location of the study sites comprised of four pine plantation fields located in Alabama, Georgia, and Florida. Red circles represent loblolly pine sites while the
blue square represents the slash pine site. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 3

Site and stand characteristics.
Site characteristic Loblolly 1 - AL Loblolly 2 - GA Loblolly 3 - FL Slash - FL
Latitude 33.8434° N 32.1241°N 29.7603° N 29.7548° N
Longitude —86.2993° W —84.6552° W —82.2906° W —82.1633° W
Annual average precipitation (mm) 1500 1282 1300 1256
Annual average temperature (°C) 16 18 20.5 20.5
Annual average solar radiation (M]J/m?) 16.87 17.67 17.7 17.9
Dominant Hydrologic Soil Group D C A B
Elevation range (m) 177-192 176-189 50-57 38-50
Average stand biomass (tons/ha) 56 82 133 73
Average maximum MODIS LAI (m?/m?) 3.8 3.1 2.2 5.1
Stand age in the first year of measured data (years) 4 6 4 3
Observation period 2002-2010 1999-2010 1987-2008 2001-2012

field-boundaries based on an area of interest (AOI), producing four “wa-
tershed” SWAT models (one for each study site), each having one sub-
basin and one HRU representing the pine plantation field. Further
details of this process are provided in Section S1.8 of the Supplementary
Materials (Appendix C).

The automated model calibration software SWAT-CUP was used to
individually perform model calibration at each study site. In the first
step of the calibration, only LAI development curve parameters were
calibrated at monthly time-step to accurately represent intra-annual
LAI behavior. To do so, we used remotely sensed MODIS LAI time series
data for a single year from each site, targeting years with relatively
smoothly varying LAI estimates. We opted for this calibration rationale
to (1) circumvent SWAT-CUP's inability to generate averaged outputs
for the entire simulation period, and (2) avoid years having excessively
noisy MODIS estimates. Next, parameters controlling the magnitude of
simulated maximum and minimum LAI and total biomass were cali-
brated simultaneously using annual maximum and minimum MODIS
LAl values and field measured annual stand biomass as constraints, re-
spectively, for all simulated years. Maximum and minimum inter-
annual LAI and total biomass were calibrated simultaneously so that
the model performance with respect to LAl did not degrade its perfor-
mance relative to biomass. We used the Kling-Gupta Efficiency (KGE)
metric (Gupta et al., 2009) as the objective function and assigned
equal weights to LAI and biomass. As highlighted by Althoff and
Rodrigues (2021), equal weights are conventionally assigned to all var-
iables when using KGE. The specific period used for inter-annual LAl and
biomass calibrations varied across the study sites according to available
data: 2002-2010 (biomass) and 2003-2010 (LAI) for Loblolly 1 - AL;
1999-2010 (biomass) and 2003-2010 (LAI) for Loblolly 2 - GA;
1987-2008 (biomass) and 2003-2008 (LAI) for Loblolly 3 - FL; and
2001-2012 (biomass) and 2003-2012 (LAI) for Slash - FL. Each model
was run with a 3-yr warm-up period to initialize conditions such as

antecedent soil moisture; trees were planted as seedlings during this
period to avoid bare soil conditions.

Next, ET-related parameters were calibrated for each site using
MODIS 8-day ET estimates aggregated to a monthly time step. For ET
calibration, we used the percentage bias (PBIAS) as the objective func-
tion rather than the KGE to avoid excessive model over or underestima-
tion. KGE is sensitive to data “peaks” (Pool et al., 2018), and MODIS ET
estimates are very noisy, often showing multiple peaks during the
year. The specific calibration periods were 2002-2018 at Loblolly 1 -
AL and Loblolly 2 -GA, 2002-2008 at Loblolly 3 - FL, and 2002-2012
at Slash - FL. For LAI and ET, model performance was assessed using
the coefficient of determination (R?), PBIAS, and Root Mean Square
Error (RMSE). For total biomass, we opted for the Nash-Sutcliffe Effi-
ciency (NSE) coefficient instead of R? since the observed total biomass
data presents less variability than monthly LAI and ET and facilitates
the use of NSE as goodness of fit metric. Since we only had annual obser-
vations of total biomass, model calibration for biomass was carried out
at annual basis. These statistical metrics are commonly used to evaluate
model performance in simulating variables such as LAI, biomass, and ET
(Alemayehu et al., 2017; Strauch and Volk, 2013; Yang et al,, 2018; Yang
and Zhang, 2016). For further details about these statistical rating met-
rics, the reader is referred to Althoff and Rodrigues (2021) and Moriasi
etal. (2007).

3.4. Quantifying the effects of improved forest parameterization on water
fluxes

Changes to each site's hydrology from the improved forest
parameterization were assessed by comparing the mean annual
water budgets of default and improved model simulations. The
mean annual water balance was chosen since it is heavily driven
by mean annual ET, which is often the largest outflowing

Table 4
Description of input data and sources.
Data Description Source
Model input Topography  National Elevation Dataset at 10 m resolution  United States Department of Agriculture (USDA) Geospatial Data Gateway (https://datagateway.nrcs.
data usda.gov/)
Land use 2008 Cropland Data Layer United States Department of Agriculture (USDA) Geospatial Data Gateway (https://datagateway.nrcs.
usda.gov/)
Soil Gridded Soil Survey Geographic (gSSURGO) United States Department of Agriculture (USDA) Geospatial Data Gateway (https://datagateway.nrcs.
usda.gov/)
Climate Daily precipitation, maximum/minimum PRISM climate group (http://www.prism.oregonstate.edu/),National Land Data Assimilation Systems

temperature, solar radiation, wind speed

(NLDAS) phase 2 (https://Idas.gsfc.nasa.gov/nldas/NLDAS2model_download.php), National Solar

Radiation Database (https://nsrdb.nrel.gov/)

Atmospheric  Wet and dry deposition of nitrate and
deposition ammonia
Model Seasonal LAl 4 days composite dataset at 500 m pixel
calibration resolution
ET 8 days composite dataset at 500 m pixel
resolution
Biomass Field-measured annual total trees biomass
Annual LA Field-measured annual LAI

National Atmospheric Deposition Program (NADP) (http://nadp.slh.wisc.edu/)

Moderate Resolution Imaging Spectroradiometer (MODIS) (https://Ipdaac.usgs.
gov/products/mcd15a3hv006/)

Moderate Resolution Imaging Spectroradiometer (MODIS) (https://Ipdaac.usgs.
gov/products/mod16a2v006/)

Long-term field studies conducted FMRC, FBRC, and PMRC in Georgia, Florida and Alabama, respectively
Long-term field studies conducted FMRC, FBRC, and PMRC in Georgia, Florida and Alabama, respectively



https://datagateway.nrcs.usda.gov/
https://datagateway.nrcs.usda.gov/
https://datagateway.nrcs.usda.gov/
https://datagateway.nrcs.usda.gov/
https://datagateway.nrcs.usda.gov/
https://datagateway.nrcs.usda.gov/
https://nsrdb.nrel.gov/
https://nsrdb.nrel.gov/
https://nsrdb.nrel.gov/
http://nadp.slh.wisc.edu/
https://lpdaac.usgs.gov/products/mcd15a3hv006/
https://lpdaac.usgs.gov/products/mcd15a3hv006/
https://lpdaac.usgs.gov/products/mod16a2v006/
https://lpdaac.usgs.gov/products/mod16a2v006/

H. Haas, N.G.F. Reaver, R. Karki et al.

catchment water flux and can be substantially impacted by SWAT
forest parameterization.

4. Results
4.1. Re-parameterization effects on simulated forest structure

4.1.1. Leaf area index

The improved pine forest parameterizations applied here yielded
tremendously improved agreement between simulated and observed
intra-annual LAI compared to default models (Fig. 2), with mean R?
values across sites increasing from 0.14 to 0.76. Marked differences be-
tween default and improved parameterizations included improvements
in predicting the start and end of the growing season. While the default
parameterization had unreasonably early annual LAI peaks (February-
April), the improved parameterization and MODIS LAI benchmark
data (Fig. 2) were well matched, generally peaking between June and
August. Additionally, the default parameterization predicted the start
of senescence between April and May, while the improved parameteri-
zation and MODIS LAI data showed LAI decline starting between July
and August and were closely aligned (Fig. 2).

The new parameterization also improved predictions of inter-
annual LAI at all sites (Fig. 3), with R? increasing from the range
0.00-0.20 with the default model to 0.11-0.57 with the new param-
eterization across the study sites. The default parameterization
strongly overestimated LAI for loblolly pine (mean PBIAS = —43%)
and underestimated LAI for slash pine (PBIAS = 17.3%). The im-
proved parameterization reduced model over/underestimation by
88%, 94%, and 76% for Loblolly 2 — GA, Loblolly 3 - FL, and Slash -
FL, respectively, but increased PBIAS from —7.5% to +20% for
Loblolly 1 - AL. The enhanced accuracy of the improved parameteri-
zation was also reflected in a reduction of mean RMSE from 2.27 to
0.75, a 67% decline (Fig. 3).
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4.1.2. Forest biomass

With improved parameterization, modeled annual total biomass
(BIOxor,yr) was much better matched with observations across all sites
(Fig. 4). Indeed, SWAT-simulated biomass using the default parameter-
ization yielded an unrealistic and unrepresentative pattern with little, if
any, biomass accumulation over time. As a result, the default models
underestimated biomass by more than 70% at all sites, while simula-
tions with improved parameters had a mean absolute PBIAS of 12.2%.
The new parameterization also led to significant improvements in tem-
poral estimates at all sites, with mean NSE? values across sites increasing
from —4.8 to 0.97. Mean RMSE was also reduced from 82.8 to 16.0, an
81% decline.

4.2. Re-parameterization effects on simulated water fluxes

4.2.1. Evapotranspiration

SWAT was able to capture the inter-annual and seasonal variability of
ET reasonably well at all sites with both the default and improved param-
eterizations (Fig. 5). However, with the default parameterization, SWAT
substantially underestimated ET compared to MODIS estimates (mean
PBIAS = 22.5%), while the new parameterization reduced model underes-
timation at Loblolly 3 - FL and Slash - FL (mean PBIAS = 14%) and yielded
small model overestimation for Loblolly 1 - AL and Loblolly 2 - GA (mean
PBIAS = —10.5%). The improved parameterization also led to substantially
improved R? values for all sites (except Slash - FL, which declined only
slightly), with an overall increase in mean R? from 0.22 to 0.54 across
the four sites. RMSE was similarly improved at all sites (except Loblolly 2
- GA, which increased slightly), with an overall decrease in mean RMSE
from 32.8 to 27.0 when using the new parameterization, an 18% reduction.

4.2.2. Water budget partitioning
Beyond improvements in ET estimation, the more realistic forest pro-
cesses simulated using improved model parameters also translated into
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Fig. 2. SWAT simulation results of intra-annual LAl under default and improved forest parameterizations compared to MODIS estimates at all study sites. The displayed results referred to a

single year.
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Fig. 3. Simulated versus MODIS LAI under default and improved model parameterizations. The bottom table shows the model performance for predicting monthly LAI under default and

improved parameterizations. Values in parenthesis refer to the default model performance.

marked differences across all elements of water balance partitioning
(Fig. 6). Overall, ET dominated the water budget at all sites and was also
the component that changed the most under the new model parameter-
ization. For example, at the Loblolly 1 - AL site, ET accounted for 43% of
outgoing water fluxes in the default model (616 mm), followed by 31%
via groundwater outflow (GW_Q; 446 mm), and 26% via surface water
outflow (SURQ; 385 mm). Under the new SWAT parameterization, the
proportion of outflow from ET increased to 53% (772 mm), with ground-
water and surface water fluxes of 25% and 22%, respectively (358 and
316 mm). The relatively high surface runoff rates simulated for this site
may be explained by soils, which belong to hydrological soil group
(HSG) D. At the Loblolly 2 site, as a result of 27% increase in ET with the
improved parameterization, GW_Q was reduced from 368 mm (or 30%
of the water balance) to 204 mm (or 17% of the water balance), while
SURQ decreased from 200 mmy/year (16% of the water balance) to
148 mmy/year (12% of the water balance) (Fig. 6). Similar trends were
found at the Loblolly 3 site, but with the main difference observed in sub-
surface fluxes. With default SWAT forest parameterization, ET repre-
sented 56% of the water budget (670 mm), while GW_Q and lateral
flow (LATQ) represented 43% (516 mm) and 1% (12 mm), respectively.
Under the improved forest parameterization, ET:P increased to 60%
(ET = 729 mm), while GW_Q:P dropped to 38% (462 mm) and LATQ:P
remained unchanged. SURQ was insignificant at this site, most likely be-
cause of the site's HSG being A and soil texture being 95% of sand.
Surface flows were minor at the Slash - FL site due to soils in HSG B, but
this site saw the most dramatic effect of improved forest parameterization

on water balance partitioning. In the default simulation, 54% of annual pre-
cipitation was lost as ET (637 mm), 39% contributed to groundwater out-
flow (456 mm), and only 6% contributed to surface water outflow
(74 mm). Using the improved model parameterization, these proportions
substantially changed, with 77% of annual rainfall lost to ET (919 mm), 17%
going to groundwater (209 mm), and 5% contributing to surface water
(Fig. 6).

4.3. Sensitivity analysis and model re-parameterization

The improved values for the SWAT parameters associated with LAI,
biomass, and ET are given in Table 5. Notably, the improved values
largely differed from the default values displayed in Table 2. Marked dif-
ferences were found for parameters such as BIO_E, VPDFR, T_BASE,
T_OPT, GSI, CANMX, BIO_LEAF, CHTMX, denoting the discrepancies be-
tween the default's SWAT forest parameterization and physically mean-
ingful values. Results showed that the calibrated parameter values
varied not only across the studied species but also across locations for
the same species. This is especially true for parameters governing the
intra-annual LAI dynamics. Other parameters such as BIO_E, EXT_COEF,
BLAI, VPDFR, CANMX, GSI, CHTMX also presented large variations in
their calibrated values according to the site's location.

The sensitivity analysis results displayed in Tables S2-S5 of the Sup-
plementary Materials section (Appendix B) showed that, overall, five
out of eight parameters were sensitive at the 95% confidence interval
to biomass simulation, namely BIO_E, RDMX, EXT_COEF, BLAI, MAT_YRS.
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Fig. 4. Simulated versus field measured total annual biomass under default and improved model parameterizations. The bottom table shows the model performance for predicting annual
biomass under default and improved parameterizations. Values in parenthesis refer to the default model performance.

Except for the slash pine site, all selected parameters were sensitive to
monthly LAI prediction. Similarly, results indicate that all selected pa-
rameters were sensitive to seasonal ET simulation. Overall, BIO_E and
MAT_YRS showed the highest sensitivity to biomass, while GSI and
CHTMX were the most sensitives to ET.

5. Discussion

Given the widespread application of SWAT as a hydrologic simula-
tor, its simplistic plant database for modeling forest dynamics, and the
importance that forests play in driving hydrological processes, we con-
tend that forests in SWAT's plant database should be re-parameterized
for species-specific trees before conducting hydrological and water
quality assessments.

Here we present a methodology to re-parameterize SWAT's
plant database using publicly available remote-sensing data, pub-
lished literature, and field measurements to derive physically
meaningful parameter values underlying key forest processes in
SWAT. Our improved parameterization aimed to enable SWAT to
reasonably simulate the growth and dynamics of two widely culti-
vated tree species in the SE-US and serve as a starting point for fu-
ture modeling studies in this region and open new avenues for
SWAT re-parameterization of other tree species worldwide. Our re-
sults highlight the benefits of re-parameterization for modeling for-
est processes such as LAl development and biomass accumulation
and their subsequent effects on hydrologic processes such as ET,
demonstrating the magnitude of water balance changes brought
about by improving SWAT's skills in simulating forest processes.
We believe the re-calibration approach and results presented in
this work are important for advancing scientifically based and

data-driven parameterization of hydrologic models and increasing
the reliability of such models as decision-making tools.

5.1. Re-parameterization effects on simulated forest structure

5.1.1. Leaf area index

LAI controls canopy evaporation and strongly influences plant tran-
spiration and needs to be accurately represented in hydrologic models
in order to estimate the amount of water being lost as ET (Sampson
etal, 2011).

The intra/inter-annual LAI predicted by all re-parameterized models
showed good agreement with MODIS estimates and findings from for-
estry studies. For instance, Wightman et al. (2016) found that loblolly
pine LAI peaked at the end of July in northern Florida. The authors
also reported peak values of LAI ranging from 2 to 3.6 m?/m? in
2012-2013, similar to the MODIS estimates and model predictions pre-
sented here (Fig. 3), although simulated LAI peaks usually occurred in
August. The divergent timing of maximum LAI may be due to natural
variability, site management conditions, or annual variation associated
with climatic variability between our study site and that of Wightman
et al. (2016). Another reason could be the uncertainties associated
with MODIS LAI estimates, which might have delayed the LAI peak dur-
ing the parameterization stage. Notably, Samuelson et al. (2017) re-
ported peak LAI of 2 to 3.2 m?/m? in late August or early September
for loblolly pine stands in GA, which is in good agreement with the re-
sults presented here for Loblolly 3 - GA.

Despite some uncertainties in the MODIS-derived LAI algorithm
(Jensen et al., 2011), these data proved useful for deriving species-
specific phenological patterns and stand characteristics and generally
improved SWAT's skills in predicting inter-annual LAL. However, there
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Table 5
Calibrated values of parameters used for LAI, biomass, and ET calibration.

Science of the Total Environment xxx (XXXX) XXx

Parameter Loblolly 1 - AL Loblolly 2 - GA Loblolly - 3 - FL Slash - FL Default value

LAI shape v__HEAT_UNITS{[1],1}.mgt 5912.39 4485 5518.84 5551 1800
v__DLAI{128}.plant.dat 0.89 0.91 0.95 0.5 0.99
v__FRGRW1{128}.plant.dat 0.31 0.15 0.21 0.45 0.15
v__FRGRW2{128}.plant.dat 0.45 0.36 0.49 0.85 0.25
v__LAIMX1{128}.plant.dat 0.52 0.34 0.35 0.43 0.7
v__LAIMX2({128}.plant.dat 0.69 0.71 0.69 0.73 0.99

LAI + biomass v__EXT_COEF{128}.plant.dat 0.41 0.56 0.42 0.59 0.65
v__BMX_TREES{128}.plant.dat 139 187 187 141 1000
v__BIO_LEAF{128}.plant.dat 0.02 0.02 0.02 0.02 0.3
v__BIO_E{128}.plant.dat 8 7 11 3 15
v__T_BASE{128}.plant.dat 4 4 4 5 0
v__T_OPT{128}.plant.dat 24 25 25 25 30
v__BLAI{128}.plant.dat 3.7 34 2.8 54 5
v__ALAI_MIN{128}.plant.dat 13 13 13 29 0.75
v__MAT_YRS{128}.plant.dat 5 4 1 4 30
v__CURYR_MAT{[1],1}.mgt 1 1 1 1 -
v__RDMX({128}.plant.dat 29 2 2 2 35
v__VPDFR{128}.plant.dat 1.2 29 1.8 23 4

ET v__CANMX.hru 1.59 0.6 0.93 0.95 0
v__ESCO.hru 0.84 0.85 0.84 0.74 0.95
v__GSI{128}.plant.dat 0.01 0.008 0.005 0.02 0.002
v__CHTMX{128}.plant.dat 7.14 20 7 14 10
v__EPCO.hru 0.48 0.48 0.48 0.38 1

were several specific times and locations where even the improved
model diverged from remotely sensed LAI estimates. For example, at
the Loblolly 1 - AL site, the re-parameterized SWAT model often failed
to capture LAl dynamics at the beginning of the growing season, leading
to a substantial underestimation of LAI (Fig. 3). Specifically, MODIS-
estimated LAI began to increase around February, potentially related
to understory greening (Biudes et al., 2014; Jensen et al., 2011), while
SWAT-simulated LAI remained low and constant until beginning to in-
crease in April. Additionally, while the re-parameterized model for
Slash - FL was improved (R?> = 0.11) over the default model (R? =
0.06), the model did not match well with the observed inter-annual
LAI pattern (Fig. 3). The model's relatively poor performance at this
site may be related to the high seasonal variability in MODIS LAI at
this site, including multiple annual LAI peaks, which can challenge
model calibration. The second LAI peak observed in MODIS estimates
(Fig. 3) at the slash pine site is likely related to understory growing,
which cannot be captured by SWAT. This mismatch between simulated
and MODIS LAI values resulting from understory greening led to a sub-
stantial model underestimation of monthly LAl However, the re-
parameterized model showed good skills in replicating the first LAI
peak, which we content denotes a good model performance in simulat-
ing the monthly LAI dynamics of slash pine.

5.1.2. Total stand biomass

Our re-parameterization substantially improved biomass simula-
tions. The main reason for SWAT's poor performance in simulating
tree biomass with the default parameterization was an unrealisti-
cally high value for the parameter BIO_LEAF. This parameter controls
the fraction of total biomass converted to residue during dormancy
annually; the default value is 30%, impeding reasonable biomass ac-
cumulation (Fig. 4), an issue also reported by Yang and Zhang
(2016). Using field measurements of aboveground biomass and fo-
liage biomass, we determined a more realistic value for BIO_LEAF
across sites (Tables 2 and 5). We note that unrealistically high con-
version of biomass to residue can also substantially affect SWAT's
water quality algorithms. For instance, SWAT considers three organic
nitrogen pools to model the soil nitrogen (N) cycle (Neitsch et al.,
2011). The fresh N pool is associated with plant residue and is a di-
rect source of nitrate (NO3') via mineralization. Consequently, the
overestimation of residue has the potential to unrealistically increase
NOs3  transport to downstream water bodies. Indeed, we found higher
residue levels under the default model parameterization compared to
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the improved parameterization (Tables S6-S9), which were associated
with greatly increased mineralization of fresh organic N (not shown).
While beyond the scope of this study to calibrate parameters related
to mineralization and nitrification, this should be addressed in future ef-
forts to better constrain forest soil nutrient cycling in hydrological
models.

Beyond its contribution to soil nutrients, the amount of residue on
the soil surface also affects sediment yield in SWAT since the Universal
Soil Loss Equation (USLE) (Williams, 1975) cover and management fac-
tors are computed as a function of plant residue (Neitsch et al., 2011).
Finally, biomass is important because it directly affects soil evaporation
(Egs. (S15) and (S16)). With potential impacts on both hydrology and
water quality, getting plant biomass is critical for hydrological modeling
applications, especially in forested ecosystems. Our findings point to a
strong need to revise model parameters related to forest growth and dy-
namics of dominant species when applying SWAT in forestlands and
highlight the benefits of our improved model parameterization over
the default.

5.2. Re-parameterization effects on simulated water fluxes

5.2.1. Evapotranspiration

Model re-parameterization substantially increased the proportion of
precipitation lost as ET at all study sites and led to better agreement be-
tween SWAT-simulated and MODIS-estimated ET. These findings con-
cur with Yang et al. (2018), who also found the default SWAT model
to greatly underestimate ET in forested ecosystems. Although biomass
and LAI both affect ET estimates in SWAT (Eqgs. (S17) and (S19)), we
had to calibrate several additional ET-related parameters to account
for variations among tree species and climate conditions (Table 5).
Overall, the maximum stomatal conductance (GSI) was the most sensi-
tive parameter for ET across all sites (Tables S1-54 in the supplementary
materials under Appendix B). The calibrated values of GSI ranged from
0.005 to 0.02 m/s, substantially higher than the default value of
0.002 m/s, which could be a primary reason why SWAT underestimates
ET when using the default FRSE forest type. Studies such as Samuelson
et al. (2012) and the ones shown in Table 2 point to higher stomatal
conductance associated with slash pine trees compared to loblolly
pine. This is in line with Gonzalez-Benecke et al. (2016) and Gonzalez-
Benecke et al. (2014b), who derived canopy conductance for loblolly
and slash pine stands based on data from long-term eddy covariance
sites in North Carolina and meteorological measurements.
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The simulated average annual ET was highest for the Slash - FL site
(930 4 45 mm), which was expected given that site's higher (simu-
lated) LAI compared to the three loblolly pine sites. However, even
after re-parameterization, the model underestimated monthly ET by
17% at this site. This under-prediction could be related to unrealistically
low soil evaporation resulting from biomass overestimation (Fig. 4). As
shown in Egs. (S15) and (S16), higher aboveground biomass reduces
the maximum soil evaporation in SWAT (due to shading). While the
model underestimation was high, average annual ET values for the
Slash - FL site was in good accordance with McLaughlin et al. (2013),
who compiled studies investigating ET in the Southeastern Coastal
Plain and found an ET range of 754-1168 mm/year at slash pine planta-
tions in Florida. Additionally, our results are in line with the findings of
Gonzalez-Benecke et al. (2014b), who reported ~900-1200 mm/year of
rainfall lost as ET on slash pine plantations in the SE-US. Although the
climatic conditions at the Loblolly 2 — GA and Loblolly 3 - FL sites are
similar (Table 3), ET was higher in GA (857 + 66) than FL (700 +
64 mm), respectively. This difference is probably due to higher LAI at
the GA site, which increases the interception rates and consequently
the amount of water readily available for evaporation. Even though Lob-
lolly 1 -AL receives more annual precipitation, on average, than Loblolly
2 - GA, and the mean annual LAl values are similar, simulated annual ET
was lower (772 £+ 69 mm) in AL. This is most likely related to the site's
soil type (HSG D), which generates high surface runoff, leaving less
water to infiltrate the soil profile for potential evapotranspiration.

Although the default SWAT models reconstructed the seasonal pat-
tern of ET fairly well, marked underestimations were found. Beyond lead-
ing to better predictions of LAl and biomass, our re-parameterization
further improved SWAT ET simulations and reduced the underestimation
of ET.

5.2.2. Water budget partitioning

Our forest re-parameterization modified the simulated water bal-
ance across all study sites towards increased ET and decreased surface,
subsurface, and groundwater fluxes. The fraction of precipitation lost
as ET changed the most, from 43 to 56% under the default parameteriza-
tion to 53-77% after re-parameterization. These proportions are in line
with the findings of and Lu et al. (2003) and McLaughlin et al. (2013),
who reported an average ET:P ratio ranging from 50 to 95% and 70%, re-
spectively, in the SE-US. ET is often the main outflow component of the
water budget, with fractions as high as 90% of rainfall in densely for-
ested ecosystems like pine plantations (McLaughlin et al., 2013). Conse-
quently, small changes in ET can lead to major impacts on other water
balance components, and forest dynamics must be well represented in
hydrological modeling studies for forested regions. For example, land
use/land cover change studies considering the impacts of afforestation
and/or deforestation must be shown to accurately simulate forest dy-
namics before drawing conclusions about the water resource impacts
of different scenarios. In this context, our study holds the promise to
contribute to and improve future hydrological modeling studies in for-
ested watersheds.

The relative percent changes of surface and subsurface water fluxes
from the default to the improved forest parameterization varied sub-
stantially across the study sites, with the highest changes at sites with
the greatest increases in ET, namely Loblolly 2 - GA and Slash - FL.
Across sites, reductions in water yield with the new forest parameteri-
zation are not surprising given substantial increases in the ET:P ratio.
Overall, groundwater was most sensitive to increases in ET. Our results
suggest that relying on SWAT's default forest parameterization may
lead to overestimation of groundwater fluxes and aquifer storage,
which can potentially lead to flawed conclusions were the model to be
used to support decision-making. The simulated rates of lateral flow
were relatively low across all sites, varying from 0 to 3% of the water bal-
ance. This is due to a combination of site slope and saturated hydraulic
conductivity values, since in SWAT, lateral flow is computed as a func-
tion of the water content in a saturated soil layer, the saturated
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hydraulic conductivity, and slope. The study site showing the highest
lateral flow, Loblolly 2 - GA, has a moderate saturated hydraulic conduc-
tivity (108 mmy/h) but is located in a relatively flat area. The site Loblolly
1 - AL, for instance, while being located in the highlands, has a low hy-
draulic conductivity (32 mm/h). The sites located in Florida have the
lowest slope among all study sites. This combination of factors leads
to small lateral flow being simulated in our models. Future work
should assess whether improved forest parameterization also im-
proves watershed-scale fluxes such as surface runoff, lateral flow,
and baseflow, observed data that were not available for this study.

5.3. SWAT forest re-parameterization and broader implications

The SWAT model has found wide applications for various purposes
worldwide and is considered to be the most widely used hydrological
model in the world (Abbaspour et al., 2019), but it has not been suffi-
ciently tested in forested ecosystems (Amatya and Jha, 2011; Yang
et al,, 2019). As highlighted by Gassman et al. (2007), SWAT's plant da-
tabase is limited and needs to be expanded to support a larger variety of
plant species. Notably, the plant database was originally parameterized
based on observations from annual crops, and the model is generally ro-
bust and straightforward for simulating crop biomass (Nair et al., 2011;
Wang et al., 2015; Yang et al., 2018). However, growth rates, plant size,
water and nutrient demands, biomass accumulation, and energy ex-
change can differ greatly between crops and trees, representing a short-
coming for tree growth modeling in SWAT. Parameters such as BIO_E,
T_BASE, T_OPT, GSI, CANMX, BIO_LEAF, and CHTMX, for example, repre-
sent physical processes that can be usually measured via field experi-
ments and for which values are many times documented in the
published literature. The marked differences between SWAT's default
values of such parameters and the values found during the re-
parameterization stage illustrate the limitations of SWAT in accurately
representing forest processes. Particularly, we identified unrealistic
values of T_BASE, T_OPT, BIO_LEAF, BLAI, and GSI for representing loblolly
and slash pine in SWAT. As shown by Eqs. (S1)-(S2), T_BASE and T_OPT
directly influence the total number of heat units required for a forest to
complete a growing season and consequently impact the intra-annual
LAI dynamics. Our findings are in line with Yang and Zhang (2016),
who have also identified low T_BASE, high T_OPT, and high BIO_LEAF
in SWAT's default forest parameterization. As shown by Eq. (S12), BLAI
impacts the maximum canopy storage with underlaying effects on sim-
ulated ET. We identified excessively high BLAI values in SWAT's plant
database for simulating loblolly pine, which is in accordance with the
findings of liames et al. (2018). On the other hand, SWAT's default
Bl Al s low for representing slash pine. Overly low GSI leads to underes-
timation of ET with the default forest parameterization, as illustrated by
Egs. (517)-(518).

As expected, substantial differences in model parameterization were
found between loblolly and slash pine, as demonstrated by the im-
proved values of parameters such as BLAI, ALAI_MIN, RDMX, VPDFR,
and GSI (Table 5). The variation in their calibrated values should not
come as a surprise given the physiological differences existing between
loblolly and slash pine species (Dalla-Tea and Jokela, 1991; Jokela and
Martin, 2000; Roth et al., 2007; Samuelson et al., 2012). Further, our
findings show variations in improved parameter values across the lob-
lolly pine sites, which suggests the existence of site-specific characteris-
tics influencing the simulation of forest processes in SWAT. For instance,
differences in intra/inter-annual LAl and biomass-related parameters
can be interpreted based on the benchmark data used to calibrate the
models. On the other hand, differences in parameters such as
HEAT_UNITS, and BIO_E are most likely related to climate characteristics
such as temperature and solar radiation. Phenological characteristics
such as LAl may have influenced the values of parameters like EXT_COEF
and GSI, while soil properties may help to understand the differences in
RDMX across the loblolly pine sites. Differences in loblolly pine produc-
tivity and physiology have been reported across sites and largely
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attributed to nutrient deficiencies (i.e., nitrogen and phosphorus) in the
SE-US (Ducey and Allen, 2001; Green et al., 1994; Gregoire and Fisher,
2004; Will et al,, 2015). It is worth highlighting that our study sites pres-
ent varying physical characteristics such as mean annual temperature
and solar radiation, total precipitation, and soil properties, which favors
the application of our re-parameterization to a broad geographical
range across the SE-US.

Sensitivity analysis was performed on 18 parameters related to the
simulation of plant growth and dynamics in SWAT. Not all inventoried pa-
rameters were included in the sensitivity analysis since parameters such
as BIO_LEAF, T_BASE, T_OPT, EPCO, and CURYR_MAT were assigned fixed
values rather than optimized within a certain range. Considering that
parameters usually represent processes in SWAT, identifying sensitive pa-
rameters may help to understand the processes influencing the prediction
of variables such as LAI, biomass, and ET and interpret the relative impor-
tance of different parameters in simulating such variables. Our findings
show the importance of parameters regulating the shape of the LAI
curve in predicting intra-annual LAI and indicate that they should be op-
timized to adequately simulate LAl development in SWAT. Moreover, pa-
rameters such as GSI and CHTMX were highly sensitive to ET simulation
and demonstrate the importance of processes such as stomatal conduc-
tance and system states such as maximum canopy height in predicting
ET. This should not come as a surprise given the role played by stomatal
conductance and canopy height in the PM formulation (Eqs. (S17)-
(S20)). Additionally, CANMX was shown to be highly sensitive to ET,
which indicates the importance of canopy interception in simulating ET
in SWAT. Although the parameters sensitivity to inter-annual LAI and bio-
mass simulation varied substantially across the study sites, the results
presented here highlight the importance of BIO_E and MAT_YRS. As illus-
trated by Eqs. (S5)-(S6), BIO_E represents the efficiency of the tree in
converting the intercepted photosynthetically active radiation into bio-
mass and can be interpreted as the representation of photosynthesis in
SWAT. The importance of MAT_YRS comes from the fact that this param-
eter influences the maximum amount of biomass that can be accumu-
lated by the stand in a single year (Eq. (S12)) and highlights the
necessity of adjusting the number of years required by a certain species
to reach maturity when predicting stand biomass in SWAT. In the current
study, trees were planted in the warmup period and MAT_YRS should be
interpreted here as the number of years required by the trees to transition
from a seedling to a sapling. If the default MAT_YRS value of 30 years had
not been changed, the biomass accumulation would have been exces-
sively low with underlying effects on soil evaporation (Eqgs. (S15)-
(S16)) and simulated water fluxes. Although our re-parameterization
was not validated against independent datasets such as accrual measure-
ments of LAl and ET, due to the lack of available data, the nowadays large
availability of remote-sensing data facilitates the validation of our
methodology at the watershed-scale in the SE-US. We acknowledge
that some of the parameters calibrated here are highly site-specific
(e.g., BMX_TREES) and may not be directly applicable for other modeling
studies. However, given the wide geographical and climatological range
of sites considered in this study, the loblolly and slash pine parameteriza-
tion presented here should be broadly useful.

6. Conclusions

Here we introduced a novel methodology to enhance the represen-
tation of forest processes in the widely used SWAT model and showed
its benefits over the default parameterization at four pine plantation
stands across the SE-US. Our results showed that under the default for-
est parameterization, SWAT was unable to accurately represent forest
dynamics due to unrealistic parameter values in the model's plant data-
base, leading to inadequate LAI predictions, large underestimations of
annual biomass, and monthly ET across all study sites. Our proposed
re-parameterization, validated using field and remotely sensed data,
improved the representation of forest structures and processes such as
LAL biomass, and ET.
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Re-parameterization translated into changes in the simulated water
budget, with large impacts on ET, surface, and subsurface fluxes. Overall,
the new parameterization increased ET and decreased surface runoff,
lateral flow, and baseflow at all sites. The extent to which the improved
forest parameterization affected hydrological processes in SWAT sug-
gests that forest dynamics should be considered before conducting
any model application in forested ecosystems. Inventorying physically
meaningful values of important parameters impacting interception,
soil evaporation, transpiration, canopy height, LAI, biomass accumula-
tion, and modification of the atmospheric boundary layer are a step for-
ward to adequately representing the effects of forest dynamics on
hydrological processes in SWAT and can be applied in other settings.
Overall, these findings provide valuable information for improving the
representation of forest processes in SWAT and can strengthen the ap-
plication of watershed models in forested ecosystems worldwide.
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